A R e e s T e R S e

On Bridgin g the Analysis-Desi o
and Structure-Behavior Grand
Canyons with Object Paradigms

INCE THE LATE 1970s, software developers have faced two

“Grand Canyons.™ The first chasm is the process-data or be-
havior-structure, represented by data flow diagrams (DFDs)2

on the one hand and entity-relationship diagrams (ERDs)” on

the other. In 1978, DeMarco noted that DFDs were not strong enough
for data held over time. His solution was introducing an ERD as a sec-
ond type of diagram that emphasizes data rather than processes. The
second, more general chasm has been between analysis and design. For
many years, professionals have been stymied by the underlying repre-
sentation shift that accompanied the transition from analysis to design.
This major shift prevented designers from systematically adding design-
dependent details to the analysis results. Relating to the issue of differ-
ent representations for different parts of information system develop-
ment, Martin and Odell* point out that there really are three views to
the world: the analyst view, the designer view, and the programmer
view. Object-oriented (O-O) methods that have evolved in recent years
have attempted at improving this situation. While they contribute to-
wards narrowing the gap between analysis and design, this gap still ex-
ists, Many O-O approaches address the problem of bridging the gap be-
tween analysis and design. For example, the Object Modeling Technique
{OMT)’ proposes a smooth transition between consecutive phases of sys-
tem development. While the analysis-design gap has been narrowed
through the use of O-O techniques, no serious attempt has been made
to close the process-data gap. Moreover, this structure-behavior gap
seems to widen as attempts to bridge the analysis-design gap are start-
ing to bear fruit, ;
In the first part of this article we

bility of defining high-level processes as entities that are not necessar-
ily encapsulated within objects.

DELINEATING THE BORDER BETWEEN ANALYSIS AND DESIGN

The border between the analysis stage and the design stage is often
fuzzy. Coad and Yourdon® propose a general rule from the analyst and
designer points of view. While the systems analyst is concerned ex-
plicitly with the user’s world, the problem domain, and the system re-
sponsibilities, the designer is concerned with translating and adapting
the analysis results into a particular hardware/software implementa-
tion. The design should consist solely of expanding the analysis results
to account for the complexities introduced in selecting a particular im-
plementation.

According to Rumbaugh et al,,” the distinction between analysis
and design may at times seem arbitrary and confusing. They define
simple rules for differentiating between the two stages. The analysis
model should include information that is meaningful from a real-
world perspective and should present the external view of the system.
In contrast, the design model is driven by relevance to the computer
implementation. In other words, analysis is understanding a problem,
design is devising a strategy to solve the problem, and implementation
is building the solution in a particular medium. With Rumbaugh’s
OMT method, there is no clear-cut border between the analysis and
design phases. Instead, information is gradually added to the analysis
model to form the design model.

Jacobson et al.® claim that there is no uniformly applicable answer
to the question. On the one hand,

survey and compare several O-O Dov Dori
methodologies from the point of | Technion, Iracl Institute of Technology
view of how they treat the struc-
tural and behavioral aspects of
the system under construction, and
how they propose to carry out the
analysis results into the design
phase.

In the second part we elaborate
on how the object-process para-
digm® integrates structure and be-
havior by providing for the possi-

Moshe Goodman
Technion, Isracl Institute of Technology

we want to do as much work as
possible in the analysis stage,
where we can focus on essentials,
but on the other, we do not want
to be committed to concepts that
may potentially be changed when
adapted to the implementation
environment. They conclude that
the time for the transition between
the stages should be decided sep-
arately for each application.
Martin and Odell* emphasize

VoLuME 2 NUMBER 5

25




1 THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS LI

the advantage of O-O methodologies over the traditional ones. While
in the traditional development methods analysts, designers, and pro-
grammers spoke three different languages (analysts used ERDs; design-
ers, DFDs; and programmers, COBOL, C, etc.), with O-O techniques de-
velopers at all stages, as well as the end users, use the same conceptual
model. The transition from analysis to design becomes so natural that
specifying when analysis ends and design begins is sometimes difficult.

Overall, the various O-O methods have indeed contributed to nar-
rowing the analysis-design gap. However, the situation with the struc-
ture-behavior gap is much less favorable, as the survey in the next section
shows.

LINKING LIFECYGLE PHASES IN CURRENT 0-0 APPROACHES

Support of the entire development cycle of an information system by
a single methodology has been addressed in the literature, although
such discussions are sparse. In this section we survey a number of O-
O methodologies from two perspectives: (1) the way they handle the
various aspects of the system during analysis and (2) the way they han-
dle the transition from analysis to design.

Object Modeling Technigue

OMT incorporates several concepts to obtain high granularity for ex-
pressing different modeling situations. OMT combines the following
three models that relate to each other, each with its own graphical tool,
written to its right:

* object model: object model diagram
* dynamic model: state diagram + global event flow diagram
* functional model: data flow diagram + constraints

These three models are used as part of the analysis procedure. Each one
of the three OMT models contributes to system development. The ob-
ject model contains most of the declarative structure, the dynamic model
specifies the high-level control strategy for the system, and the functional
model captures functionality of objects that must be incorporated into
methods. An example of using OMT was shown in two recent columns
by Rumbaugh.?! The example concerns building a simulation for the
evolution of “bugs.” The simulation deals with a two-dimensional world,
containing only bugs and bacteria. Bugs eat bacteria, split, and move in
the world, while bacteria are like “manna from heaven” that appear ran-
domly at different locations. In the analysis stage,” the objects compris-
ing the system are identified and displayed in an object diagram. A state
diagram is drawn for each object, and operations are shown in a DFD.
To cope with the combinatorial explosion expected in a flat state dia-
gram, Rumbaugh et al. use statecharss. Statecharts are a broad extension
of the conventional state machines and state diagrams introduced by
Harel.! Statecharts expand conventional state diagrams with three el-
ements dealing with hierarchy, concurrency, and communication. In the
design phase’ the analysis model is expanded into the design model.
The main focus at this stage is the expansion and realization of opera-
tions (from the dynamic and functional models) as methods of object
classes, together with clarifications and modifications to the object di-
agram. These methods are presented as pseudocode. The object model
is updated to make it amenable for efficient implementation without
changing its fundamental meaning. This is achieved using transforma-

26

tions that include clarification of attributes, elimination of unnecessary
information, and modification of associations for optimization pur-
poses. In the implementation phase!® the results of the design are
mapped into a specific programming language. Being an O-O approach,
the object model of OMT is particularly suitable for developing appli-
cations that are basically static in nature. The dynamic and functional
models handle system aspects beyond structure. Comprehensive un-
derstanding of the system under consideration through OMT remains
a complicated task, since each one of the three models has a different
perspective and a separate graphic representation. This leaves the bur-
den of integration among the various system aspects to the developer.

Object-Oriented Software Engineering
0-0 Software Engineering (OOSE), presented by Jacobson et al.,® is

a use case—driven approach. OOSE defines the following five models
for the various states of software development:

1. Requirements model: The requirements model defines the limita-
tions of the system and specifies its behavior. It consists of a use-
case model, interface descriptions, and a problem domain model.
The use-case model uses actors and use cases. These concepts are
an aid in defining what exists outside the system (actors) and what
should be performed by the system (use cases).

2. Analysis model: The analysis model aims at structuring the system
independently of the actual implementation. At this stage, the ob-
Jective is to capture information, behavior, and presentation of the
system. The object types used in the analysis are entity objects, in-
terface objects, and control objects, while in most other O-O analy-
sis (0OA) methods, only one object type is used, typically entity ob-
jects. The introduction of control objects is motivated by the need
to handle the dynamic model of a system, which cannot be per-
formed satisfactorily using an approach that is exclusively O-O.

3. Design model: The main effort in developing the design model is
to adapt the analysis model to an actual implementation environ-
ment. The design model is regarded as a formalization of the analy-
sis model, where the latter is adapted to fit into the implementa-
tion environment. In the first phase of the design, each object in
the analysis is mapped into a design block. Since the design model
is an abstraction of the actual system, it should reflect how the im-
plementation environment has affected construction. The goal here
1s to maintain the structure, as defined in the analysis model, while
reflecting the semantics of the objects in the corresponding design
blocks. Great care must be exercised in changing, adding, or delet-
ing blocks during the design. In the second phase of the design the
interaction between the objects is defined. This is done by the in-
teraction diagram, and it is in this phase that use cases play 2 major
role. The interaction diagram is expected to clarify the requirements
from each object. These requirements specify the necessary inter-
faces among the blocks. The interfaces then serve as preliminary
definitions of function prototypes, needed for the implementation
stage. After the interface of each block is defined, the internal
structure of the blocks can be outlined. A state transition graph is
drawn to provide a simplified description for each block.

continued on page 31

JANUARY-FEBRUARY 1996




1 THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS 1

continued from page 26

4. Implementation model: The implementation model consists of the
annotated source code. The basis for the implementation is the de-
sign model. Once state transition graphs exst for every block, the im-
plementation in a specific programming language describes how
terms and properties used in design are translated into terms and
properties in the implementation language. Examples of implemen-
tation rules in different languages are given.

5. Test model: The test model is developed for testing the system.
Testing is done at a number of different levels of granularity. The first
step is testing the lower levels, such as object modules and blocks.
These are tested by the designers. Units at the subsystem level are
then tested. The integration test does not come in a “big bang.”
Rather, it is introduced on varying levels when integrating parts of
increasing magnitude.

Object-Oriented Analysis
The 00A method, presented by Coad and Yourdon,!? consists of ﬁve
layers: subject, class and object, structure, attribute, and service. These

five layers correspond to the following five major OOA activities applied
in this order:

* finding classes and objects: identifying objects and object classes
that constitute the basis for the application

* identifying structures: determining generalization-specialization and
whole-part relations that induce inheritance and reflect composition
of objects, respectively

* defining subjects: aggregating objects into groups with related se-
" mantics, called subjects, that can be used as modules of the system
under construction

* defining attributes: identifying the set of attributes of each object class

* defining services: identifying the set of services (methods) for each
object class and the message connections among the classes

The first four activities model the structure of the system, while the last
activity handles the dynamic aspect of the system. Each service is de-
scribed by a service chart—an enhanced flow chart. Objects interact
through message passing. The OOA approach prescribes a method of
identifying the objects in the system. Hence, OOA is an effective tool
for analyzing systems that are basically static in nature.

Object-oriented design (OOD)* comprises four major components:
problem domain, human interaction, task management, and data man-
agement. Each component corresponds to a particular design activity,
in which each one of the five analysis layers should be handled.

When designing the problem domain component, objects defined
in the analysis stage should be transformed into design objects. The no-
tation used in the two stages is identical. The dynamic parts of the sys-
tem at this stage are also handled through message passing. However,
when the system is dynamic in nature it features many services, in which
case the web of messages passed among objects becomes intractable. The
authors do not explicitly refer to the design of the dynamic aspects of
the system that are not reflected by message passing. Due to lack of ad-
equate tools, such aspects are also hard to represent in the analysis phase.

VoLuME 2 NUMBER §

Designing of the human interaction component includes capturing
how a human user will command the system and how the system will
present information to the user. Analysts study people to get the con-
textand content right during 00A. Designers need to continue to study
people, this ime designing the interaction specifics, using interaction
technologies available for a particular system.

For certain applications, tasks simplify the overall design and code.
Separate tasks separate behaviors that must go on concurrently. This con-
current behavior may be implemented on separate processors or may be
simulated when a single processor is used in conjunction with a multi-
tasking operating system. Task selection and definition are presented
during the design of the task management component.

Large systems must usually include some method of saving and
restoring data overtime—a database. The design of the database and its
interface with the rest of the system are addressed during the data man-
agement component,

Object-Oriented Systems Analysis

Object-Oriented Systems Analysis (OSA), developed by Embley et al., 13
is defined as an approach for capturing and organizing information per-
tinent to the design and implementation of a software system. OSA isa
“model-driven approach,” implying that there is no predetermined set
of steps to carry out the analysis. Instead, the analysis comprises a col-
lection of different models. The ability to work concurrently with these
models is a basic concept in this model-driven approach. A model-dri-
ven approach is expected to be more suitable for system analysis than a
method-driven approach because analysis cannot usually be prescribed
as a given set of steps. OSA consists of three major parts, each using a
different model. The object-relationship model (ORM) is used for mod-
eling the objects in the system and the structural relations among them.
The object-behavior model introduces the concept of states. Every ob-
ject in a system can be in one of many states. These states and the con-
ditions for switching among them are defined. Each object found in the
ORM is “exploded” into a set of states, conditions (triggers) for chang-
ing these states, and the action(s) that should be performed as a result
of each change, which may include interaction with different objects.
The object-interaction model models the interaction among the objects.
The three models relate to a variety of cases that may occur within a sys-
tem: real-time requirements, multiple inheritance, ime-constrained in-
teractions, etc. Each one of the three models can also be represented at
various levels of abstraction. Design and implementation are not ad-
dressed by 08 A, but 08 A lays a foundation for O-O systems design and
O-0O systems implementation.

Object-Oriented Analysis and Design

Martin and Odell* divide the analysis into two parts: object structure
analysis (OSA) and object behavior analysis (OBA). These two activities
should be performed together to form an integrated model of the sys-
tem. For the 0SA, Martin and Odell present the object-relationship di-
agram. As stated by the authors, this diagram is essentially the same as
an ERD.? The following information is identified during OSA:

* What are the object types and how are they associated?
* How are the object types organized into supertypes and subtypes?

* What is the composition of complex objects?

37




1 ' THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS b

While OSA is concerned with the static aspect of the system, OBA han-
dles system dynamics. During OBA, the following information is ob-
tained for each object:

* What states can the objects be in?

* What state transitions occur?

The resulting states and transitions among them are drawn in state
transition diagrams, which address the following questions:

* What events occur?

* What operations take place?

Operations and events are drawn in an event schema referring to the
following questions.

* What interactions occur among objects?
* What trigger rules are used to react to each event?
* How are the operations represented in methods?

In the state transition diagram, the states of each object, the transi-
tions between these states, and the events that change the state of an
object are defined. For each object, a fence diagram (state transition di-
agram) is drawn to model the object lifecycle. In the fence diagram,
all object states are shown and the possible transitions between the
states are modeled as arrows, pointing from one state to the next.
Event schemata are drawn to show the events, the sequence in which
they occur, and how they change the state of objects. Interaction
among objects, operations (also known as services or methods), and
external sources of events are defined. Hierarchical schemata can be
used in the behavioral part of the analysis for simplifying the repre-
sentation of complex operations, using different levels of abstraction.

Recognizing the difficulty involved in integrating these two sepa-
rate analysis tools. Martin and Odell offer yet another diagram—the
object-flow diagram (OFD)—which is used to represent the system at
the strategic level. OFDs are similar to DFDs.? Both depict activities
interfacing with other activities, but while in DFDs only data flows
among activities, OFDs enable objects to be passed from one activity
to the next. The OFD indicates the objects that are produced and the
activities that produce and exchange them. To model the dependency
between processes, the process-dependency diagram 1s drawn. The re-
sult of the analysis, according to Martin and Odell, is four sets of di-
agrams: the event schema, the process dependency diagram, the OFD,
and the state-transition (fence) diagram. These four types of diagrams
together constitute the activity schema. The interaction among the dif-
ferent diagrams is not quite clear. A way to connect the event schema
with the object schema is suggested by drawing arrows from the event
schema to the objects in the object schema that are affected by the
event. The result, as illustrated on a small example, seems cumbersome.

0OD has two aspects: object structure design (OSD) and object be-
havior design (OBD). These two aspects are a continuation of the dif-
ferent aspects in analysis (OSA and OBA, respectively). However, since
OOPLs encapsulate data structures and methods into classes, both
0SD and OBD are intertwined and are addressed concurrently. In the
design phase, the following information is identified:

32

* What classes will be implemented?
* What data structures will each class employ?
* What operations will each class offer and what will their methods be?

* How will class inheritance be implemented and how will it affect
the data and operation specifications?

Martin and Odell present ways of mapping the elements of object and
event schemata to OOPL constructs and methods, respectively. Design
is conceived as a direct continuation of the analysis, and hence the gap
between structure and behavior, introduced during analysis, is carried
on to the design phase.

Object Lifecycles

Shlaer and Mellor!? propose the object lifecyele approach for analyz-
ing information systems. They propose to perform OOA in three steps,
using the following three models.

Information models. The first step focuses on abstracting the world as
a collection of objects, their attributes, and the relationships among the
different objects that make up the system. The relationships are based
on policies, rules, and physical laws that prevail in the real world. The
resulting information model diagram is similar to the familiar ERD.]

State models. The second step is concerned with the behavior of ob-
Jects and the relationships among them over time. Each object has a
lifecycle—an orderly pattern of dynamic behavior. State models for-
malize these lifecycles. A state transition diagram, similar to a flow
chart, is used to represent the different object states and the transitions
among them. The diagram includes actions performed when an ob-
Ject is in a specific state and events that cause an object to change its
state. Another diagram, the oject communication diagram, is used for
modeling the interaction among different objects.

Process models. All the processing required by the problem is contained
in the actions of the state models. Each action is defined in terms of
processes and object data stores, where a process is a fundamental unit
of operation and an object data store corresponds to the data (attributes)
of an object in the information model. Each action is displayed graph-
ically in an action data flow diagram (ADFD), which is similar to a DFD,
except that like Martin and Odell's DFD it also allows for the flow of
objects. A separate ADFD is produced for each action in the state model.

Shlaer and Mellor offer a detailed and systematic method for
transforming analysis results into 0OD. They explicitly show how
their analysis model can be directly mapped into a detailed design.
OODLE is proposed as a language-independent notation for their
00D. The notation has been named OODLE, an acronym for O-O
Design Language. The objective of OODLE is to represent the fun-
damental concepts of OOD in an intuitive manner. In OODLE nota-
tion, another set of diagrams has been developed to describe four
significant aspects of design:

* class diagrams that depict the external view of each class

* class structure charts that show the internal structure of the code of
the operations of each class

JanuarRY-FEBRUARY 1996




1 THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS

* dependency diagrams that depict the client/server and
friend relationships that hold between classes

* inberitance diagrams that show the inheritance rela-
tionships among the classes

OOD can be directly derived from the models of 0OA. The
design of the system as a whole is expressed in terms of
the design as a single program. Each program is made up
of a main program, four architectural classes, and a num-
ber of application classes. The main program is responsi-
ble for intertask communication and the invocation of
operations of the application classes to initiate threads of
control. Three architectural classes—Finite State Model,
Transition, and Active Instance—supply mechanisms re-
quired to initialize and traverse state machines. The fourth
architectural class, Timer, provides a mechanism analo-
gous to the Timer object of 00A. The application classes
are analogous to, and derived from, the objects and state
models of OOA. Each one is responsible for the same ac-
tivities carried out by its OOA analog. For each of the
classes—architectural and applications—a class structure
chart (presented as part of OODLE) is used to show the
structure of the code, as well as the flow of data and con-
trol within the class. During implementation, the mod-
ules of the archetype class structure charts are coded in the
particular language of choice.

OBJECT-ORIENTED ANALYSIS AND DESIGN
METHODOLOGIES: A COMPARISON

Table 1 summarizes the preceding survey by comparing
the six O-O methodologies (and the object-process ap-
proach discussed below) from two perspectives: (1) What
structure, behavior, and additional models does each
methodology have within its analysis phase? (2) How is
the transition from analysis to design supposed to proceed?

THE OBJECT-PROCESS ANALYSIS APPROACH

Object-process analysis (OPA)® combines ideas from O0A
and DFDs to model both the structural and procedural as-
pects of a system in one coherent frame of reference. The
structure-behavior model unification distinguishes the ob-
ject-process paradigm from conventional O-O approaches
including the ones surveyed above. In OPA, high-level
processes have their own right of existence rather than be-
ing associated as services of objects. The detachment of
processes from objects is a direct consequence of the ob-
servation that in many cases, nontrivial processes cannot
be uniquely associated with a single object, or class of ob-
jects. The O-O approach heralds encapsulation—the
packaging of procedures (“services” or “methods”}—and
enforces the attachment of each procedure to one partic-
ular object class. In complex systems, though, it is often the
case that a process can occur only through the activation
of more than one object, In such cases, the choice of which
object to attach the service to is bound to be arbitrary, as

VoLuME 2 NUMBER g

N

Inspection

-

—

Insert Tray

Figure 1. Top-level OPD of the Insert Defect Detection system.

Quality

| Check

Vision System

Figure 2. Unfolding of the process “Inspection” and the object “Insert Inspection System”

of Figure 1.




1 THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS 1

Analysis Models
Structure Behavioral Additional Transition to

Name Main author model model model(s) design Comments
Object Rumbaugh et al. DObject model Dynamic Functional ! Expansion of

Modeling 1991 model model | the analysis

Technique | model

{OMT)

Object- Jacobson et al ® Entity objects Control Interface Adaptation Includes
Oriented 1992 objects objects and formalization requirement,
Software of the analysis test, and
Engineering model implementation
(00SE) models
Object- Coad & Objects with Services and None Design of the

Oriented Yourdon'2 attributes message passing static aspect

Analysis 1991 among objects only

(00A)

Dbject- Embley et al." Object Object Object Not addressed A model
Oriented 1992 relationship behavior interaction driven
Systems model model model approach
Analysis (ORM) (0BM)

(0SA)

Object- Martin & Object Object Object flow Supposed to

Oriented Odell* structure hehavior diagram be a direct

Analysis & 1992 analysis analysis (OFD) mapping of

Design (OSA) (OBA) analysis

Object Shiaer & Information Process & None A direct

Lifecycles Mellor* models state models mapping of

1992 analysis using
OO0DLE

Object Dori® Object-process None Under Unified structure-
Process 1895 development behavior analysis
(OP) model
Tahle 1 8 y of analysi dels and transition to design within the various 0-0 methodologies.

it is impossible to pinpoint one particular object that is solely “respon-
sible” for the process. The mechanism of message passing among ob-
jects is the way O-O methodologies provide for interaction among ob-
jects. This mechanism frequently yields unintuitive awkward modeling,
In OPA, processes are not confined to be services or methods of any
particular object. Moreover, the effect of an OPA process is to change
the state of at least one object. This makes object orientation’s mecha-
nism of message passing among objects unnecessary. Avoiding message
passing prevents the difficulty this mechanism potentially introduces.
This, in turn, enhances the expressive power of OPA.

An important feature of objects and processes in OPA is that they
are recursively scalable. Scalability provides for complexity manage-
ment of systems through controlling the visibility and level of detail
of things in the system. Scaling is a process of changing the level of
detail of a thing (object or process). Scaling up is a process of increas-
ing the level of detail of a thing, Scaling down is a process of decreas-
ing the level of detail of a thing.

To demonstrate some of OPA’s features we provide an example of
a system analyzed by OPA. In an industrial process, “inserts” for metal-
cutting tools are manufactured. The inserts are then sent to an auto-
mated quality check, one tray of inserts at a time, and defected inserts

K |

are removed from the tray. A robot takes one tray at a time and posi-
tions it on a special “x-y table” under the camera. The table moves so
as to allow the camera to focus on one insert at a time. The image taken
by the camera is passed to a defect-detection algorithm, and defected
inserts are removed from the tray by the robot.

Figure 1 is a top-level object-process diagram (OPD) showing two
objects and one process. The inspection process affects (changes the
state of ) the object Insert Tray through the instrument Insert Inspec-
tion System. g

In the OPD of Figure 2, the Inspection process and the Insert In-
spection System object are unfolded to expose their constituents. In-
spection comprises submission, Quality Check, and Termination. The
inspection system is made up of a robot, which is the instrument for
the submission and termination processes, and a vision system, which
is the instrument for the quality check process. The object Insert Tray
is expanded to show that it is characterized by the attributes location
(with possible values “in stack”, “under camera” and “out stack”) and
inspection status (“before inspection” and “after inspection”). Submis-
sion affects a tray in “in stack” location and “before inspection”. This
process changes the location (and hence the state, which is the vector
of attribute values) to “under camera”. Likewise, the quality check

JanuarY-FEBRUARY 1996




] THE ANALYSIS-DESIGN AND STRUCTURE-BEHAVIOR GRAND CANYONS L]

process changes the inspection status to “after inspection”, while ter-
mination changes the location to “out stack.”

An additional level of up-scaling is introduced in the OPD of Fig-
ure 3, where Vision System and Quality Check are further unfolded, and
Insert Tray is further expanded. At this level of detail we can trace what
happens to a particular insert if it is found to be defective. Two major
features are demonstrated in this example:

1. OPA integrates system structure (objects and their aggregation and
generalization) and behavior (processes and how they affect object
states) within one diagramming methodology.

2.OPA is capable of recursive scaling to show system details at any
granularity level.

CONCLUSION

Inall the O-O methodologies surveyed above, the analysis is dispersed
among many models, depicted by a variety of diagram types. The mul-
tiplicity of diagram types is dragged into the design and implemen-
tation phases, yielding an application that is more complex, hard to
understand and difficult to maintain. This has been the main moti-
vation for developing the object-process (OP) paradigm as an exten-
sion of the object paradigm. OP departs from accepted O-O method-
ologies in the recognition of processes as parts of the analysis that are
integrated within one graphical tool—the object-process diagram
(OPD). We suggest that the analysis results obtained from OPA can
potentially evolve into the design phase, while maintaining the ad-
vantages of unification and visibility control gained by using the OPA
approach. Using a single tool for the different aspects of the system
and throughout the various stages of the system development should
make a significant contribution to information systems engineering
by delivering systems that are more understandable than those ob-
tained by the current multiple-models/multiple-diagrams O-O
methodologies.

We intend to specifically define the activities involved in the tran-
sition from analysis to design and from design to implementation us-
ing the object-process methodology. A CASE tool for building soft-
ware systems using the OPA paradigm is planned. The C++
programming language may require some extensions to support aspects
of OPA that cannot be implemented directly using standard C++. %

Acknowledgment

This research was supported by Technion V.P.P. Fund-B. and I.
Green Research fund.

References

1. Coad, R. and E. Yourdon. Osjeer-OrienTED DESsicn, Prentice
Hall, Englewood Cliffs, NJ, 1991.

2. DeMarco, T. STRUCTURED ANALYSIS AND SYSTEM SPECIFICATION,
Yourdon Press, New York, NY, 1978.

3. Chen, PP. The entity relationship model—toward a unifying view of
data, ACM Transactions on DaTa Base Systems 1:9-36, 1976.

4. Martin, J. and J. Odell. OpjecT-ORIENTED ANALYSIS & DESIGN,
Prentice Hall, Englewood Cliffs, NJ, 1992.

5. Rumbaugh, J. The life of an object model, JournaL or OgjecT-
OrienTED PrOGRAMMING 7(1):24-32, 1994.

VoLUME 2 NUMBER §

Recruitment Center To place an ad, please call Mike Peck at 212.242.7447

o

. Dori, D. Object-process analysis: Maintaining the balance between
system structure and behavior, JournaL of Logic anp CoMPUTA-
TioN 5(2):227-249, 1995.

. Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Loren-

son. OpJecT-ORIENTED MoODELING AND DEsIGN, Prentice Hall,
Englewood Cliffs, NJ, 1991.

8. Jacobson, 1., M. Christersson, P. Jonsson, and G.G. Overgaard.
OsgjecT-ORIENTED SoFTWARE ENGINEERING, Addison-Wesley,
Reading, MA, 1992.

9. Rumbaugh, J. The evolution of bugs and systems, Journar or Os-
JECT-ORIENTED PROGRAMMING 4(7):48-52, 1991,

=~J

10. Rumbaugh, J. Designing bugs and dueling methodologies, Jour-
~NaL OF OBjecT-ORIENTED PROGRAMMING 4(8):50-56, 1992.

11.Harel, D. Statecharts: A visual formalism for complex systems,
Science o CoMpPUTER PROGRAMMING 8:231-274, 1987,

12.Coad, R. and E. Yourdon. OsjecT-ORIENTED ANALYSIS, Prentice
Hall, Englewood Cliffs, NJ, 1991.

I3.Embley, D., B. Kurtz, and S. Woodfield. OpjecT-ORrIENTED Sys-
TEMS ANALYsIS, Prentice Hall, Englewood Cliffs, NJ, 1992.

14.Shlaer, S. and S. Mellor. OrjecT Lire CycLEs—MODELING THE
WoRrep 1n STaTES, Prentice Hall, Englewood Cliffs, NJ, 1992.

Dr. Dov Dori is Head of the Information Systems Area of the Faculty
of Industrial Engineering and Management, Technion, Israel Institute
of Technology. Moshe Goodman is an Information Systems Engineer
and MS candidate of Information Management Engineering at
Technion. They may be contacted at dori@ie.technion.ac.il.

35




