|EPORT ¢

INALYSIS

Dirsion g

Liu Wenyin and Dov Dori

Object-Process Diagrams as an
Explicit Algorithm-Specification Tool

ABSTRACT

Algorithms need clear and formal representations to be im-
plemented as computer programs. The Object-Process
Methodology (OPM) has been shown to successfully describe
the structure and behavior of systems by combining objects
and processes within an integrated, coherent set of object-
process diagrams (OPDs). However, OPDs lack control-flow
constructs for explicit specification of the entire process se-
quence, which is essential for algorithm implementation. In
this article we augment the OPD notation to explicitly mark
the necessary execution order among processes by intro-
ducing four basic control-flow mechanisms—sequence,
branch, loop, and recursion—as well as other means, such
as process ownership, to support current object-oriented de-
sign and programming concepts. The explicit representation
of an algorithm also makes it possible to automatically gen-
erate the program code from the OPD set and reverse engi-
neer existing complex code to an OPD set to enhance code
understandability, maintenance, and reuse.

egy for a given problem. A computer solution to such a
problem is an implementation that applies the strategy
through a sequence of computer instructions comprising a com-
puter program. The algorithm should be formalized into a clear
representation in order to be correctly transferred from design
to implementation.
To be implementable in different hardware and software en-
vironments, algorithms should be designed to be programming-
language and data-structure independent. The designed algorithm

An algorithm is an abstraction of a particular solution strat-

Liu Wenyin is at Microsoft Research in Beijing, China, and in the Department of
Computer Science and Technology at Tsinghua University, also in Beijing, and can
be contacted at wyliu@microsoft.com.

Dr. Dov Dori is head of the Area of Information Systems Engineering at the Facully of
Industrial Engineering and Management, Technion, Israel Institute of Technolagy in
Haifia, Israel. He can be contacted at dori@ie.technion.ac.il.

52 JOOP MAY 1999

has traditionally been expressed using two optional methods: nat-
ural (“structured”) language or flowcharts. Natural language de-
scription consists of a labeled sequence of sentences. The labels
are used to specify a special execution order other than the de-
fault consecutive order. A flowchart is a graphical counterpart of
the textual specification, in which sentences are enclosed in boxes.
The execution order between two boxes is denoted by a direct
link from one box to another. Conditional branching, a special
construct expressed by a diamond with the condition text inside
and outlets at two corners labeled “Yes” and “No,” is introduced
to indicate the execution order under certain conditions.

While these two description modes are programming-lan-
guage and data-structure independent, both focus on processes
and flow of control, leaving objects and the data that represent
them implicit. The lack of explicit representation of objects and
data makes the conversion of flowchart algorithm specification
into code an incompletely specified task.

By inserting new nodes for data between process nodes, the
data-flow diagram (DFD) provides more detailed data flows than
flowcharts. In DFDs, data are inputs/outputs of processes, and
processes can be considered to be data transformations.! The ex-
tended DFD proposed in Ward’s article! is an improvement over
flowcharts, but it lacks expression of structural relations among
objects such as Aggregation-Participation, Generalization-
Specialization, and Featuring Characterization.

PLAN DIAGRAMS

Inspired by the common, fundamental characteristic shared by
various engineering types, Plan Calculus? is devised for a formal
representation of algorithms and programs that are used in the
different phases of software development. It describes the struc-
ture of an algorithm or program using a set of plan diagrams
(PDs), each of which is composed of a set of constructs classi-
fied into parts, connections (links), and constraints. It uses in-
put/output specifications to represent processes. A pair consisting
of a test (branch) specification and a joint specification is intro-
duced to represent the conditional branching control-flow mech-

anism. One connection type is a special control flow, represented
by directed arcs with double crosshatch marks. Another con-
nection type is data flow, represented by simple directed arcs
connecting outputs to inputs of processes. The data are labeled
at the inputs and outputs with names followed by a colon and
(optionally) a type constraint.

In PDs, each data flow and control flow provides a partial or-
der of abstraction of the program text. This order is more flexi-
ble than the fixed order induced by flowcharts and DFDs.
Constraints in the PD include the preconditions and postcon-
ditions of processes and tests, and the invariants of data repre-
sentations, which further restrict the implementation of the parts.
PDs can abstract various kinds of mechanisms of control flows
and data flows. Recursion expression is allowed in a PD by spec-
ifying the sub-PD as the type within the main PD. Iterations are
expressed as tail recursions. PDs can provide convenient graph-
ical descriptions of algorithms at different, appropriate abstrac-
tion levels, thereby enhancing the capability to understand,
interpret, and program algorithms.

Despite their usefulness, PDs, like enhanced DFDs, also suf-
fer from a lack of adequate reference to objects. The relationship
between data and processes is restricted to input/output. With
the advent of object concepts, the limited expressive power of
this kind of representation approach has become more appar-
ent, while the constant increase of the complexity of algorithms
and systems poses ever more stringent requirements of precise
and complete specification.

The object paradigm has been gaining wide acceptance as the
favored approach to system analysis and design. The entity-re-
lationship diagram (ERD) approach,* on which the object
paradigm relies, shifts the emphasis from processes to data, which
are referred to as “objects” in the object-based and object-ori-
ented concepts, but it is limited to expressing relationships among
data. Object-oriented (OO) analysis and design methods, e.g.,
Object-Oriented Analysis and Design with Applications,s attach
processes to objects and represent structure, behavior, function,
and other aspects of systems using a different model for each as-
pect. This multiple model approach poses a severe integration
problem, which makes their use for systems developinent in gen-
eral and for concise algorithm specification in particular a diffi-
cult task due to this inherent integration problem.

THE OBJECT-PROCESS METHODOLOGY

The Object-Process Methodology (OPM)5-8 is a system anal-
ysis and design approach that combines ideas from OOA and
DED within a single modeling framework to represent both the
static/structural and dynamic/procedural aspects of a system
in one coherent frame of reference. The use of a single model
eliminates the integration problem and provides for clear un-
derstanding of the system being modeled. The object-process
diagram (OPD) is OPM’s graphical representation of objects
and processes in the universe of interest along with the struc-
tural and procedural relationships that exist among them. Due
to synergy, both the information content and expressive power

of OPDs are greater than those of DFD and OOA diagrams
combined.

In OPM, both objects and processes are treated analogously
as two complementary classes of things—elementary units that
make up the universe. The relationships among objects are de-
scribed using structural links such as Aggregation-Participation
and Generalization-Specialization. The relationships between
objects and processes are described by procedural links, which
are classified into effect, agent, and instrument links.

An important feature of objects and processes in OPDs is
their recursive and selective scaling ability, which provides for
complexity management by controlling the visibility and level
of detail of things in the system. In general, things are scaled up
(zoomed in) as we proceed from analysis to design and to im-
plementation. The scaling capability provides for function def-
initions and calls. Specifying Generalization-Specialization among
processes enables the establishment of inheritance relations among
processes in a2 manner similar to inheritance among objects.

While OPM has been applied to system analysis and de-
sign,®~!! the expressive power of OPDs also makes them in-
strumental in specifying the finest details of algorithms that are
designed with OO concepts. The selective recursive scaling fur-
ther facilitates the detailed design and algorithmic representa-
tion.!2"14 The resulting consistency of algorithm descriptions
across the different phases of the software development process
is highly desirable and makes it amenable to computer-aided
software engineering,

However, the current terminology of OPD lacks symbols for
some of the relations between objects and processes that arise in
complex algorithmic processes when they are coded with cur-
rent OO languages. For example, control flows are only implic-
itly expressed through the partial order induced by the procedural
links, and the process ownership is not indicated.

This article augments the OPD symbol set for the purpose of
explicit specification of algorithms designed with an object-ori-
ented approach. In the next section we introduce some imple-
mentation-oriented symbols that are added to the OPD symbol
set. We then show how control flow is represented in OPDs.
Finally, we take the generic graphics-recognition algorithm?1,14,15
asa case in point to demonstrate how OPM concisely and clearly
represents complex algorithms by an OPD set.

OPD SYMBOLS FOR
IMPLEMENTATION SPECIFICATION

The implementation-oriented OPD symbols in Figure 1 are
marked with asterisks (*) and shown along with the analysis and
design OPD symbols, which are “inherited” from the previous

analysis and design phases and serve the implementation phase
as well.

Things and relations in the OPD notation

A thing is the elementary unit that makes up the universe. An
objectis a persistent, unconditional thing. A processis a transient
thing, whose existence depends on the existence of at least one

http://www joopmag.com JOoOoP 53

[RIOTAID]»

Things Structural Relations Procedural Links that is consumed (and destroyed) by
Object []| Asercgation-Participation ~ g\ | Agent link | theprocess,anditnolonger existsaf-
_) Instansit Tink ter the process execution. It can be
State/Value (—_) | Featunng Characterization A : implemented in C++ by the “delete”
Generalization-Specialization A Effect link = = ; A
Process O | (nheritance) Consumption/Result link —= statement. A resultee is a new object
Multiple Inheritance & : constructed as a result of the process
*Virtual Inheritance 2 *Process ownership —{»o| execution, such asin the C++ “new”
Hpstantiation A indication statement. The consumption link is
et Sl ik graphically represented by a one-way
R 2 *Control link it piab din ot i
Indirect Structural Link -+ arrow, directed from the consume

Figure 1. Implementation-augmented OPD symbol set.

object. These terms were originally proposed for systems analy-
sis in OPM.¢ From the design and implementation viewpoint,
an object can be regarded as a variable with a specified data type,
while a process is a function or a procedure operating on vari-
ables, which are objects.

An object class is a template of all objects that have the same
set of features and behavior patterns, and whose corresponding

name in the OO terminology is simply class. Similar to Smalltalk, -

an OPM object class can also be thought of as an object. This
concept renders the class a relative term rather than absolute. It
is relative with respect to the objects that are instantiated from
it and provides for instantiation hierarchy. A thing’s state at a
given point in time is the set (or vector) of attribute values the
thing has at that time.

Certain structural relations between two objects, namely
Aggregation-Participation, Featuring Characterization, and
Generalization-Specialization, collectively referred to as the fun-
damental relations, are represented by a triangular symbol along
the link that connects them. Aggregation-Participation describes
the relationship of composition between two objects. Featuring
Characterization’s meaning follows its name: It is the relation
between a feature—an attribute or an operation (“method,” “ser-
vice”)—and the thing that the feature characterizes. A
Generalization-Specialization link between two objects induces
an inheritance relationship between two object classes. Virtual
inheritance (which, as Figure 4 demonstrates, allows only one
subobject of the inherited class within any object of the inherit-
ing class through multiple inheritance routes) is represented by
a dotted triangle as an implementation phase symbol.

Instantiation is also an implementation-oriented symbol that
indicates an object is an instance of a class. Many structural re-
lations are transitive.

The indirect structural link, represented by a dotted line in-
stead of a solid line, denotes the fact that one or more things along
the structure hierarchy are skipped. This is a useful notation be-
cause it is frequently the case that things at intermediate levels need
not be specified in certain diagrams to avoid their overloading.

Agents and instruments are enablers of processes. They exist
before the process execution, and their state (set of attribute val-
ues) is not changed by the process execution. An effect link links
an affected object to the affecting process. An affectee is an object
whose state is changed by the process. A consumee is an object

54 JOOoP MAY 1999

object to the consuming process. The
result linkis also represented by a one-
way arrow, but the arrow in this case is directed from the process
to the resulting object. The effect link is represented by a two-way
(bidirectional) arrow between the affected object and the pro-
cess.

implementation consideration for OPDs

In current OO languages, processes (referred to as methods) and
services (or C++ member functions) belong to and are defined
within some particular object class, so that the function can be
called to handle an object (instance) of such class or the class it-
self, as in Graphics Class in Figure 11(b). In OPDs we name this
object (when the process is called to handle it) or class (when
the process is called to handle the class itself) owner of the pro-
cess. We indicate the owner of a process by adding a small blank
diamond symbol along the procedural link, next to its process
end, as shown in Figure 3 between Object1 and Process.

When an analysis/design OPD is elaborated into an imple-
mentation OPD, any one of the procedural links—agent, in-
strument, or effect—indicates that the process at one end of the
link belongs to the object at the other end of the link by adding
the diamond symbol, shown in Figure 1, next to the solid circle,
blank circle, or arrowhead, respectively. Among the procedural
links attached to any process, one at most can be indicated as the
owner. This preserves compatibility with the OO concept thata
process is defined within exactly one class.

Objects (other than the owner and the resulting objects) that
have procedural links to the process can be implemented as pa-
rameters of the process, which in C++ are const for enablers (agents

[Object4 |

Figure 2. An analysis/design OPD showing all five types of procedural
links, which from left clockwise around Process are the instrument
link {solid circle), agent link, consumption link, effect fink, and result
fink.

e S A SRR SN

Objects |+ /&

Figure 3. An alternative implementation OPD of Figure 2.

and/or instruments) and volatile for affectees (affected objects).
Similarly, the process is a const process if the owner of the pro-
cess is an enabler, and it is volatile if the owner is an affectee,
Figure 2 is an analysis OPD in which five objects (class in-
stances) are linked to a process with five different types of pro-
cedural links. It may be implemented in a number of ways. We
illustrate the extension to implementation OPDs in two of these
ways, which are presented in Figure 3 and Figure 4, respectively.
In Figure 3, each object is (either directly or indirectly) an in-
stance of a class. One of the objects is indicated by the diamond
symbol as the owner of the process. Because the object class that
the process characterizes is not indicated, the process is consid-
ered by default to be a method of the class of which the owner
is an instance—Class2 in our case. The corresponding C++ defi-
nitions and application code fragments are listed below.

class Class2
{

Class8

|Cla552 1 |Class3 |

o>
o>
Q
=)
[v]
g
8%
g
8
(%]

Object 1

ClassS

A

Figure 4. An implementation OPD of Figure 2.

Class5& Process(const Class2& Object2,
Class3& Object3,
Class4& Object4
) const;
} Object1;

Class58& Object5
= Object1.Process(Object2,
Object3,
Object4);

The process is a const process because its owner is an agent that
is not changed by the process. Object? is a const parameter of the
process because it is an instrument of the process.

In Figure 4, the process is explicitly indicated as an operation
of Class8 and should therefore be defined within Class8. Both C6
and C7 inherit from Class8. Class4 inherits from both €6 and €7,
but it holds only one copy of €6 and €7 because, as indicated by
the dotted triangle, C6 and C7 inherit from Class8 through virtual
inheritance, which takes care of the problem of inheriting mul-
tiple copies of the same ancestor. The member function Process
isno longer constbecause Object4, the owner, is an affectee, which
is affected and changed by Process. The C++ code fragment that
implements the OPD in Figure 4 is as follows:

class Class8

{
Class58& Process(const Class1& Object1,
const Class2& Object2,
Class3& Object3
)i
Y
class C6 : virtual Class8 {
}i
class C7 : virtual Class8 {
b
class Class4 : C6, C7.

{
} Object4 ;

Class5& Object5
= Object4.Process(Object1,

Object2,

Object3) ;
In another way to implement the OPD in Figure 2, Object2 and
Object3 can also be indicated as the owner of the process. The
C++ code that implements them is similar to the code fragments
shown previously. The process should be defined as a member
function to the corresponding classes, and parameters and the
process itself should also be marked const if necessary.

If an object class is indicated to be the owner, the process
should also be defined as a member function, and it should be
indicated as a static function. In this case, it is unnecessary to
mark the process with the const keyword because a static mem-
ber function cannot access data members of its class, as shown
in Figure 5 and in the following code:

class Class2
{

http://www .joopmag.com JOOP 55

[RIOIAID | stessnme

Class2 I
a

5 o]

o]

Figure 6. The use of control flows in OPDs. (a) unnecessary because
of parallelism; (b) unnecessary because of the data-flow depen-
dency; (c) ambiguous if no control link.

and P2. Hence, either process order yields the same results, as
the two processes may be executed in parallel. In Figure 6(b), the
control link is also unnecessary because the data-flow depen-
dency requires that the process order be “P1 then P2.” However,

Figure 5. An implementation OPD.

static Class5& Process(const Class2& Object2,
Class3& Object3,
Class4& Object4
by
b

Class5& Object5
= Class?2 :: Process(Object2,
Object3,
Object4);

If an object class is used as a parameter of a process, such as the
class AGraphicsClass in Figure 11(a) and Figure 11(b), the process

should be defined as a template function, as in the two
template functions shown in Listing 1.

In the analysis phase, a process may have more than
one resulting object. However, C++ implementation al-
lows at most one resulting object, which is the return
value of the process. Hence, if there are two or more
resulting objects in an analysis OPD, some of them
should be implemented as affected objects, or all of
them should be grouped into a single aggregate object.
Another alternative is to reorganize the processes so
that they obey the previous rule.

CONTROL-FLOW REPRESENTATION IN OPD
Sequence and (conditional)
branch structure

OPDs use the top-down time line” and the data flow
implied by the procedural links to define some of the
control-flow sequencing. Cases in which the control
does not flow from top down are marked by control
links. A control link is graphically represented by a
dashed arrow. It links a process or a state of an object
to a process to explicitly indicate the flow of control.
Control links describe sequential and “GOTO” con-
trol-flow mechanisms. They need not be used when the
partial order of processes is clearly defined by the data-
flow dependency. Thus, the control link is unnecessary
in Figure 6(a) because B1 is an instrument to both P1

56 JOOP MAY 1999

in Figure 6(c), the effects of the two possible execution orders
may be quite different because Bl is affected by P2. The control
link specifies the process order as “P1 then P2,” which is in ac-
cord with the data-flow dependency and eliminates the ambi-
guity of process execution order.

Branching is represented by control objects, as in Figure 7. The
number of possible branches is decided by the number of states
(possible values) that the object may hold. For two possible val-
ues, the control object represents an if-then-else statement. If the
number of possible values is more than two, it represents a switch
statement. The conditional branching control flows converge at
some point to end the branching. This converging point is P3 in
Figure 7(a) and Pe in Figure 7(b). The corresponding C/C++ code
fragments for the OPDs in Figure 7 are shown as follows:

Listing 1. Outline of the C++ implementation of the generic

graphics-recognition algorithm.

template <class AGraphicsClass>
void GraphicDataBase :: detect(AGraphicsClass*)
{
Primitive* APrimitive; ;
while ((APrimitive = AGraphicsClass::firstComponent(this)) != NULL)
constructFrom((AGraphicsClass*)0, APrimitive);
}

template <class AGraphicsClass>
AGraphicsClass* GraphicDataBase :: constructFrom(AGraphicsClass*,
(const Primitive)* APrimitive)
{
AGraphicsClass* AGraphics = new AGraphicsClass();
if (AGraphics ->fillWith(APrimitive))
{
for (int direction=0; direction<=AGraphics->maxDirection(); direction++)
while (AGraphics ->extend(this,direction));
if (AGraphics ->isCredible()) {
AGraphics ->addToDataBase(this);
return AGraphics;
}
}
delete AGraphics;
return NULL;

}

Binary Control Object Multiple-State Control Object ‘
GGG (o))
AN
,
N ol “-h,,_‘\.‘\ % ! ”’,’
0 o

Figure 7. OPD representations of conditional branching mechanisms.
(a) if-then-else; (b) switch.

if (Binary_Control_Object == True)
P1() ;

else P2() ;

P3();

switch (Multiple_State_Control_Object)
{ case S1: P1() ; break ;
case S2 : P2() ; break ;

case Sn : Pn() ; break ;
default : break ;

}

Pe() ;

The control link, like the control flow in Plan Calculus,? does
not determine the exact process sequence. The process order can
be chosen arbitrarily as long as it is compatible with the partial
order specified by the data and control flow in the OPD.

Recursion and iteration

Unlike Plan Calculus,2 OPDs allow loops of both data and con-
trol flow. In such a loop, a starting process should be explicitly
specified by a control link in order to start the iteration. A bi-
nary (two-state) control object is involved. One state (referred
to as the exit state) leads to an exit from the iteration, and an-
other (referred to as the loop state) leads to the continuation of
the iteration. The control object is governed by the results of a
testing process. The continuation of the iteration should finally
go back to the starting process. With the new definitions, OPD
can distinguish between two patterns of iteration: while-do and
repeat-until. The while-do pattern is characterized by a starting
process (possibly the testing process) followed by its resulting
control object. Repeat-until is characterized by a control object
whose loop state leads the control link back to the starting pro-
cess. For iteration, as a special form of while-do patterns, can be
recognized by finding an index indicator involved in the itera-
tion. See Figure 8(a) and Figure 8(b) for illustrations of OPD
representations of iteration. Here are the corresponding C/C++
code fragments that implement the OPDs in Figure 8:

while (Testing_Process() == Loop)
Tterating_Process();
Next_Process();

do
{

1
'
-=_Testing Process

I" |
'| i
\ I
I |
i Test !
1 .
| 0
'. ! o
! | ! ' :
'. A L
E 1
i terating Proces i ! Test
. .
' '| i i Loop || Exit
‘1 - e e ! !
________ 1

|
] | (SRR, T T
(a) (b)

Figure 8. lllustrations of iteration and recursion. (a) while-do pat-
tern; (b) repeat-until pattern.

Starting_Process();
Tterating_Process();
} while (Testing_Process() == Loop);

As an exception to the general branching mechanisms, branch-
ing that occurs inside an iteration may not have a joint end, be-
cause the conditional break and continue control mechanisms are

Resultl

|
v
:
@

Result2
1[
Y

; Increase by 1
[}
1

L

T

I

1

1

!

I .

! erating Process
| 1
|

I

i

i

|

I

|

Figure 9. lllustration of a break link from a for iteration.

http://www joopmag.com JOOP 57

is a break link. Figure 9 is an OPD of the usage of a break link from

‘ Object Class B l a for iteration. Its corresponding C/C++ code is as follows:

for (index=1 ; index<n ; index++)
U {

Recursive Process ™. Iterating_Processi() ;

‘\\ if (Testing_Process1() == True)

break;
\ Iterating_Process2();
| :

Next_Process();

Recursion is another structure that prevails in the algorithms
and programs and should be clearly expressed by OPDs at the
algorithmic detailed design level. Inspired by Plan Calculus,? we
use the same process inside the zoomed-in process to express re-

Mmum M

e

T A Graphics Class 1

_~"construct ™
- From

Figure 10. lllustration of recursion in OPD,

allowed in an iteration. A control link leading from the iterating
process to the starting process is a continue link, while a control
link leading from the iterating process to the end of the iteration

Graphics Graphic
Recognition Diatabeiss
Algorithm (GDB)
(GRA)

A
Graphics
Class

Graphics
| Recognition
(detect)

(a)

Result

p—

Graphic Database (GDB) J

A o —
Gaphics |— -.-/0 O kS N

Class) N\

: b
A Primitive ! %f‘
s

‘l __.

1

L —=0CaddToGDB 7>
o "‘\(: | adetected
> return)——>

) graphics
(C) e

(b)

Figure 11. OPD illustration of the graphics-recognition algorithm (process). (a) top-level OPD; (b) zooming into “detect” (GRA) process in (a);
(c) zooming into constructFrom process in (b).

58 JOOP MAY 1999

R T N

cursion. The same process may also occur more than once at the
same level if necessary to process different objects. At least one
control branch should be involved in the recursion to terminate
it. Figure 10 is an example of a recursion in OPD. Here is the
corresponding C/C++ code fragment:
Object_Class_B&
Object_Class_A ::
Recursive_Process(void) const
{
if (Testing_Process() == Exit)
return End_Object;
Object_Class_A& Object_A2
= Some_Process();
return Object_A2.Recursive_Process();
}

Representation of an entire algorithmic function
The details of a process (or procedure or function, as it may be
called) are expressed in an OPD by scaling up the process. A
special process, referred to as the return process, is introduced
to terminate a procedure or function, as done in many pro-
gramming languages. The number of inputs and the number
of outputs of the return process should be equal and should
be either 0 or 1. There may be many occurrences of the return
process in a single OPD. Each of them concludes the blown-
up process in a control-flow branch. The conditional branch
control-flow mechanism is usually involved in OPDs when
more than one occurrence of the return process appears in a
process. If the conditional branch control flow consists of a
return process, it is like the conditional break and continue con-
trol mechanisms in iterations, which do not have a joint pro-
cess for such a branch. Figure 10 is an example in which the
return process in the “exit” branch ends the blown-up pro-
cess. If the return process outputs an object, the resulting ob-
ject of the return process should be the same as the blown-up
process object, and it is depicted outside that process, as shown
in Figure 10.

A return process does not have an owner. It is a starting pro-
cess inside a procedure and is not necessarily required. It can be
deduced by the data and control-flow dependencies: Some aux-
iliary empty processes may also be used to keep the pattern rep-
resentation consistent if necessary.

OPD REPRESENTATION OF THE GENERIC
GRAPHIC-OBJECT-RECOGNITION ALGORITHM

In this section, we use a set of OPDs to describe a generic graph-
ics-recognition algorithm.!1.14.15 The algorithm is a two-step pro-
cedure. In the first step, we find a key component of a possibly
existing graphic of the class we are detecting. In the second step,
we construct graphics of this class from the key component found
in the first step and try to extend it by finding its other compo-
nents. The algorithm can be applied to the detection of any class
of graphic objects.!!.16 The algorithm is described in two C++
template functions shown in Listing 1. Its OPD representation
is shown in Figure 11.

CONCLUSION

We have extended OPDs to handle algorithmic representation.
Control flows in the algorithmic process are expressed by con-
trol links. Structural and procedural links among objects and
processes are specified in more detail for the sake of implemen-
tation. The resulting extended OPDs can serve as a graphic tool
for both detailed design and implementation specification, as
well as for reverse engineering of existing program code.
Transforming textual code into OPDs has great potential as a
toll for software systems maintenance and redesign. ®

References

1. Ward, P. T. "The Transformation Schema: An Extension of the Data Flow Diagram
to Represent Control and Timing,” /EEE Transactions on Software Engineering,
12(2):198-210, 1986,

2. Charles, R. and C. W. Richard. The Programmer's Apprentice, ACM Press and
Addison-Wesley, Reading, MA, 1990,

3. Abelson, H. and G. J. Sussman. Structure and Interpretation of Computer Programs,
McGraw-Hill, New York, NY, 1985,

4, Chen, P. P. 5. “The Entity Relationship Model—Toward a Unifying View of Data,”
ACM Trans. on Database Systems, 1(1):9-36, 1976.

- 5. Booch, G. Object-Oriented Analysis and Design with Applications, Benjamin-

Cummings, Redwood City, CA, 1994,

6. Dori, D. "Object-Process Analysis: Maintaining the Balance Between System
Structure and Behaviour," Journal of Logic and Computation, 5(2):227-249,
1995,

7. Dori, D. and M. Goodman. “From Object-Process Analysis to Object-Process
Design," Annals of Software Engineering, 9:1-25, 1996.

8. Liu, W. and D. Dori. "Extending Object-Process Diagrams for the Implementation
Phase,"” in Proc. of the Third International Workshop on the Next Generation of
Information Techniques and Systems, Neve llan, lsrael, pp. 207-214, June 30-July
3,1997.

9. Dorl, D. “Automated Understanding of Engineering Drawings: An Object-Oriented
Analysis,” Journal of Object-Oriented Programming, 7(5):35-43, Sept. 1994.

10. Dori, D. and Y. Dori. "Object-Process Analysis of a Hypertext Organic Chemistry
Studyware,” Journal of Computers in Mathematics and Science Teaching,
15(1/2):65-84, 1996.

11. Liu, W. and D. Dori. "Automated CAD Conversion with the Machine Drawing
Understanding System,” Proceedings of 2nd IAPR Workshop on Document Analysis
Systems, Malvern, PA, pp. 241-259, Oct. 1996.

12. Dori, D. and W. Liu. "Vector-Based Segmentation of Text Connected to Graphics
in Engineering Drawings," Advances in Structural and Syntactical Patterm Recognition,
P. Perner, P. Wang, and A. Rosenfeld, Eds., Lecture Notes in Computer Science,
1121:322-331, Springer, New York, NY, 1996,

13. Dori, D., D. Hubunk, and W. Liu. “Improving the Arc Detection Method in the
Machine Drawing Understanding System,” in Document Recognition IV—Proc.
SPIE'97, L. M. Vincent and J. J. Hull, Eds., San Jose, CA, SPIE 3027:124-134,
Feb. 1997.

14. Liu, W. and D. Dori. “A Generic Integrated Line Detection Algorithm and Its
Object-Process Specification,” Computer Vision and Image Understanding (CVILJ,
Special Issue on Document Image Understanding and Retrieval, 70(3):420-437,
1998.

15. Liu, W. etal. "Object Recognition in Engineering Drawings Using Planar Indexing,”
Proc. of the First International Workshop on Graphics Recognition, Penn. State
Univ., PA, pp. 53-61, 1995.

16. LiuW. and D. Dori. “Genericity in Graphics Recognition Algorithms,” Graphics
Recognition—Algorithms and Systems, K. Tombre and A. Chhabra, Eds., Lecture
Notes in Computer Science, 1389:9-21, Springer, New York, NY, Apr. 1998.

Quantity reprints of this article can be purchased by phone: 717.560.2001,
ext. 39 or by email: sales@rmsreprints.com.

http://www joopmag.com JOOP 59

