Expressing Structural Relations
Among Dimension-Set
Components Using the
Obyect-Process Methodology

ECOGNITION OF GRAPHICS in technical docu-
ments involves several stages of processing and
understanding. The low level is usually domain in-
dependent and includes primarily pixel-based

operations, such as thinning, edge detection, and primitive
symbol recognition. The intermediate level is already domain
dependent. It involves matching the structural relations that,
for graphics recognition, are expressed in terms of relative
position of the recognized primitives with respect to each
other. The structural relations stem from an underlying model,
which has a specified semantics. While this model-based
matching is done at the intermediate level, the semantic inter-
pretation itself is done at the high level. The high-level inter-
pretation, which is strictly domain dependent, can be viewed
as a graphical language understanding. The language, specified
by drafting standards, was originally intended solely for use
by humans. However, advanced research, analogous to natur-
al language processing, should aim at graphical language
understanding. Structural relations among primitives are the
relative location and orientation of one primitive with respect
to the other primitives in the drawing. Description of such
relations can be expressed by a number of methods, includ-
ing web grammars! and finite automata.? These methods are
powerful in that they capture and formalize the entire spec-
trum of possible primitive combinations. However, being de-

The object-process approach views objects and processes as
complimentary things in the world. Objects are things that
exist in the world (universe of interest), while processes are the
things that change the state of objects. A change of state
means a change in at least one value of the object’s attribute,
including the change of the object’s attribute Existence. Such
change may be either from negative to positive, i.e., generation
of the object, or from positive to negative, i.e., destruction of
the object. Processes are vital for describing dynamic systems
and computations of soft attributes, i.e., attributes of objects
that are derivable from hard attributes—the basic attributes,
without which the object cannot be uniquely identified. For
example, the two endpoints of a line segment are hard attrib-
utes, while its length is a soft attribute, since it can be com-
puted from the two endpoints.

THE WIRE CONCEPT

Because engineering drawings are static in nature, the graphic
symbols are related to each other through structural relations
rather than through processes. Binary structural relations ex-
press long-term associations between pairs of objects. The
three most prevalent structural relations are the aggregation-
particularization (whole-part, or “part-of”) relation, the gener-
alization-specialization (gen-spec, or “is-2”) relation, and the
characterization relation. OPDs>* provide a graphic compact

clarative in nature, they do not prescribe a
particular algorithm for checking whether
certain structural relations exist. Such
algorithms are derivable from object-process
diagrams (OPDs),3 which are the tools we
employ for structural analysis of primitives.
The domain taken as a case in point to
demonstrate the applicability of the
approach is that of mechanical engineering
drawings, but OPDs can be applied to
other related domains, such as utility
maps, cadastral maps, electric schemes,

Dov Dori
Technion, Israel Institute of Technology

and concise description of systems’ structure
and behavior.

Due to their frequent usage, the three
structural relations are denoted by solid
(black) triangles, blank (white) triangles,
and solid-on-blank triangles, respectively.
The characterization relation symbol is
demonstrated in Figure 1, which is an OPD
of the object Point.

A simple object is an object that, in the
context of the system under consideration,
has no and needs no further decomposition

piping diagrams, etc.

20

and/or characterization and/or specializa-

May-JuNE 1996

1 THE OBJECT-PROCESS METHODOLOGY]

tion. A compound object is an object that is not simple. The name
of a simple class (e.g., integer) is distinguished from that of a
compound one in that it starts with a lowercase letter. Because
integer is a simple object, so are X and Y, which are instances of
the simple class integer. Point is a compound object, which is
characterized by the two simple Point instances X and Y.

A hard attribute is an attribute whose value for an instance
of an object class must be provided in order for the instance to
be unambiguously defined. As denoted in the OPD of Figure 1,
X and Y are hard attributes of Point.

A soft attribute is an attribute that is computed from other
(hard and/or soft) attributes. The inner triangle of the soft
attribute characterization relation symbol as shown in the leg-
end of Figure 4 is blank, as opposed to the solid inner triangle
symbolizing hard attribution.

While objects are denoted by rectangles, processes are de-
noted by ellipses. Figure 2 is an OPD that describes Point and
its constructor process. The object Point is constructed by the
constructor Point inscribed within an ellipse. It gets two inte-
gers as inputs and constructs an instance of Point.

Inputs to a process that are not affected by that process are
denoted by an instrument link (blank circle, see Fig. 2 legend).
If the input object is affected, then it should be connected to

: © Legend -
Point T ;
é Object . - ~ {Name |
ChaFéﬁtari.ia'tionf- : :
X:integer relation (hard) Z&AN'
Y:integer '

Figure 1. An OPD of the object Point.

Legend

(Object [Name]
Alj SProcess .

L | Characterization
X:integer | refation (hard) &
| Y.’:inl.n‘:ger—l | Effect link —

i Instrument link —0

integer

Figure 2. An OPD of the object Point and its constructor process.

T Efdpoint 11—

Midpoint

Endpoint2—

Figure 3. Bar and Arc with their endpoints and midpoints.

http://www.sigs.com

SIGS Publications, Inc., 71 West 23rd Street, New York, NY
10010; 212.242.7447; Fax: 212.242.7574;
email: info@sigs.com; www: http://www.sigs.com

ARTICLE SUBMISSION

To submit article proposals, outfines, and manuscripts; industry
news; press briefings; or letters to the editor, please contact:
Richard S. Wiener, Editor, ROAD, 135 Rugely Court, Colorado
Springs, CO 808086; Phone/fax: 718.579.9616;

email: rswiener@eglbert.uccs.edu

CUSTOMER SERVICE

For customer service in the United States, please contact: P.O.
Box 5050, Brentwood, TN 37024-5050; B00.361.1279;

Fax: 615.370.4845; email: subscriptions@sigs.com _
For customner service outside the United States, please contact:
Subscriptions Department, Tower House, Sovereign Park,
Market Harborough, Leicestershire, LE16 9EF UK:
+44.[0)1858.435.302; Fax: +44.(0}1858.434.958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street, New
York, NY 10010; 212.242.7%47: Fax: 212.242.7574 :

< S1GS CONFERENCES
For information on all SIGS Conferences: 212.242.7515

BACK ISSUES

To order back issues, please contact: Back lssue Order
Department, SIGS Publications, 71 West 23rd Strest,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574

LIST RENTALS

For information on list rentals, please contact:
Rubin Response, 708.619.9800;
Fax: 708.619.0149

REPRINTS :

For information on ordering reprints, please contact: Duane
Dagen, Reprint Management Services, 505 East Airport Road, .
Box 5363, Lancaster, PA 17601; 717.560.2001;

Fax: 717.560.2063

For advertising information for any SIGS publication, please con-
tact:

East Coast/Europe Gary Portie
Central US Elisa Marcus
Recruitment Michael Pack
Exhibit Sales, West Coast: Kristine Viksnins
Exhibit Sales, East Coast: Sarah Olszewski

212.242.7447; Fax: 212.242.7574
West Coast

: Diane Fuller
408.255.2991; Fax: 408.255.29392

SIGS HOME PAGE

To access the SIGS Home Page on the World Wide Web:
http://www,5igs.com ;

2r

1 THE OBJECT-PROCESS METHODDLOGY g

‘Legend #

Gen-spec relation A

Object

Characterization
relation- hard) A

Characterization
relation (soft) &

| |
Endpointl: || Endpoint2;
Point Point

Width:

i Midpoint:
oa

FPoinz

Figure 4. OPD of Wire and its specializations Bar and Arc.

the process with an effect link (arrow) rather than with an
instrument link. For example, the two instrument links be-
tween the integers and the Point constructor in Figure 2
denote the fact that the integers are required for the process,
but they are not affected by it.

Bar is a straight line segment with nonzero width. An
example of a bar and an arc is shown in Figure 3. Bar has three
hard attributes: Width and two endpoints, Endpointl and
Endpoint2.

The three attributes that uniquely represent Bar, however,
are not sufficient for Arc because an infinite number of arcs
can be constructed without an additional constraint. There-
fore, an additional attribute must be assigned to Arc. There are
a number of options, including radius, center, and angle.
However, no direction (clockwise and counterclockwise) is
imposed on the direction from Endpointl to Endpoint2, for
each one of these three possible attributes we need an extra
attribute. For radius and center we need to specify the direc-
tion, and for angle we need to specify on what side of the
chord connecting the two endpoints the arc lies. Besides, in
actual engineering drawings the radius, center, or angle may
not be readily available, but what should always be available is
a third point on the arc. Therefore, Midpoint is selected as the

Legend

Object | Nnme| Bidirectional ~—=TATE_

Characterization A Aggregation A

Arrowhead: =

Bar
=

orthowire
[T |
Tip: Back; Width: Ref;:'_ence:
Endpoint] || Endpoini2 || float b

Figure 5. The structural relations cowire and orthowire among
Leader's components Arrowhead, Tail, and Reference.

22

fourth arttribute of Arc. The perpendicular bisector tracing
algorithm® uses this point to detect arcs.

Midpoint is defined as the point lying midway between
the two Bar endpoints. Arc is a specialization of Bar. For Arc,
Midpoint is a hard attribute, because it cannot be computed
from the two endpoints as in Bar, and there is an infinite num-
ber of arcs with the same width and different Midpoints.
Hence, Midpoint is a soft attribute for Bar and a hard attribute
for Arc. This is denoted in Figure 2 by drawing the actual mid-
point filled (black) for Arc and blank (white) for Bar.

Figure 4 is an OPD of Wire and its specializations Bar
and Arc. Bar inherits from Wire the three hard attributes
Endpoint1, Endpoint2, and Width. Arc, in addition, inherits
the hard attribute Midpoint. For Bar, Midpoint is 2 soft
attribute, as discussed below. The syntax for the three con-
structions is

Wire(Endpoint1, Endpoint2, Width)
Bar(Endpoint1, Endpoint2, Width)
Arc(Endpoint1, Endpoint2, Width, Midpoint)

The default Width value is zero. This enables fast construction
of Euclidean straight line segments and arcs, which are needed
frequently for various purposes. Thus, Bar(Endpoint1,
Endpoint?) and Arc(Endpoint1, Endpoint2, Midpoint) construct
zero-width Bar and zero-width Arc, respectively.

To reduce the diagram complexity, the details of Point shown
in Figure 1 are omitted from Figure 4 for all three points. This
diagram simplification strategy is applied throughout the set of
OPDs. The complete information can be obtained by looking at
all the relevant OPDs rather than just a single OPD.

The importance of generalizing bars and arcs to wires is in
the generation of an abstract object class—Wire—which en-
ables us to think and express structural relations at a higher
level of abstraction. Thus, for example, we can talk about the
cowiring relation of two wires, which is a short way of saying
“colinearity if the two wires are bars, co-circularity with the
same radius if the two wires are arcs, and tangency if one wire
is an arc and the other is a bar.”

ARROWHEADS AND LEADERS
Arrowheads are key objects for dimensioning recognition. We
refer to arrowheads whose shape is a solid isosceles triangle
because they conform with both 180 and ANSI standards and
the vast majority of drawings use them. As shown in Figure 5,
Arrowhead is a Bar whose hard attributes are Tip and Back,
which are Bar's Endpointl and Endpoint2, respectively, and
Width, which is the length of the triangle base.

Leader is an aggregation of (consists of) an Arrowhead and
a Tail, which is a specialization of Wire. Because Wire is a gen-
eralization of Arc and Bar, we have two specializations of
Leader: one consisting of an Arrowhead and a Bar (a Linear
Leader) and the other consisting of an Arrowhead and an Are
(an Angular Leader). Using the OPD in Figure 5, the graphic-
symbolic representation of these objects and the structural

May-June 1996

! THE OBJECT-PROCESS METHODDLOGY)

relations among them, from which these assertions can be
inferred, is again very compact and concise.

Structural binary relations are relations between two ob-
jects that hold in the system regardless of the point in time
when the observation is made. Common examples for such
relations are aggregation, generalization, and characterization,
which have special symbols (black, white, and black-on-white
triangles, respectively). Structural relations other than these
three prevalent ones are denoted in an OPD by the relation
name written along the line ending with one or two arrows
that leads from one object to another. An example is the rela-
tion “cowire” between Arrowhead and Tail in Figure 5

Cowiring is a generic term whose geometric interpretation
depends on the specialization of Wire. The meaning of cowiring
is colinearity if both wires are Bars, concentricity if both wires
are Arcs, and tangency if one wire is a Bar and the other is an Arc.
Thus, if a Leader has an Arc Tail, for example, that Arc should be
tangent to the Bar representing the Arrowhead. Cowiring has
three optional parameters: gap, tolerance, and knee, all with
default values of zero. Gap is the distance between the two
cowiring wires, tolerance is the amount of deviation from this
gap, and knee is the maximal angle of deviation from 180°. The
method Wire::cowire(Wirel, Wire2, Gap, Tolerance, Knee) is a
Boolean function that returns True if Wire1 cowires with Wire2,
and False otherwise. This method can be used to detect dashed
wires as well as verify the existence of a Leader.

The method Wire::conwire(Wire1, Wire2, Gap, Tolerance,
Knee) is a Boolean function that specializes Wire::cowire() in
that it returns True only if, in addition to the requirements of the
general method, it requires also that Wire1 be of the same spe-
cialization as Wire2, i.e., either both are Bars or both are Arcs,

Legand. - i
fiF - name | | Leader-pair
—)

] Instance/Valus @ e R :

Im' o {

! Aggegation A A

| |
Wiring Pointing Continuity
l [

Leaderl: is-paired-with | Leader2:
Leader Leader

Arrowhead:
Bar

comwire | Tailz | _ cowire 7 T
| Wire ’E rrowhead:
appase ...__,I | Bar

N \\

Wiring: bar bar bar
Pointing: inward inward outward ourwurd mmrﬂ mwaxd muwarﬂ on:wnrd
Continuity: nepative posilive negatve positive negative positive negative positive

and False otherwise. This method can be used to detect dashed
wires and, as shown below, pair Leaders into Leader-pairs.

Orthowiring is another generic term whose geometric inter-
pretation depends on the specialization of Wire. The meaning
of orthowiring is perpendicularity if both wires are Bars, per-
pendicularity of the Bar to the tangent of the Arc at the point
of intersection if one wire is an Arc, and perpendicularity to the
tangents of the two Arcs at the point of intersection if both
wires are Arcs. As shown in Figure 5, Arrowhead, as a Bar, has
to be orthowire to the Reference, which is a Wire, to which the
Arrowhead points.

Similar to cowiring, orthowiring has three optional parame-
ters: gap, tolerance, and knee, all defaulting to zero. Gap is the
minimal distance between one wire (Reference in our case) and
an edge of the other wire (the Tip of the Arrowhead in our case),
tolerance is the amount of deviation from this gap, and knee is
the maximal angle of deviation from 90°. The method
Wire::orthowire(Wirel, Wire2, Gap, Tolerance, Knee) is a
Boolean function that returns True if Wirel is orthowire to
Wire2, and False otherwise. This method can be used to detect
References as well as verify the existence of a Leader.

LEADER-PAIRS

A Leader-pair is a pair of Leaders, Leader1, and Leader?2, that sat-
isfy the structural relation “is-paired-with,” shown in the OPD of
Figure 6. As the OPD shows, for two Leaders to be paired, two

Figure 6. The structural relations cowire and oppose among
Leader-pair's components and the eight Leader-pair combinations.

http.//www.sigs.com

Call For

Authors

Become a part of SIGS Books &
Multimedia. We are currently seeking
authors for our three exciting book series:

¢ Advances in Object Technology
€ Managing Object Technology
@ SIGS Reference Library

FOR MORE INFORMATION...
on how to become part of SIGS Books &
Multimedia, contact :

Donald Jackson, Editorial Director

SIGS Books & Multimedia

71 West 23rd Street, 3rd Floor

New York, NY 10010

Phone: (212) 242-7447/ Fax: (212) 242-7574
E-Mail: djackson@sigs.com

23

