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Abstract 

 There is general consensus in the software literature that real-time systems are difficult to 

model, specify, and design. It is an important and challenging task to develop an intuitive and easy-

to-use, yet coherent and concise method for specifying such systems. The Object-Process 

Methodology (OPM) graphically specifies systems in a single unified model that describes the static-

structural and behavioral-procedural aspects of a system by a set of Object-Process Diagrams. In 

this research paper we present OPM/T, as an extension of OPM for specification of reactive and 

real-time systems. A detailed telephone call example demonstrates the power of OPM/T to express 

such notions as timing constraints, events, conditions, exceptions, and control flow constructs. 

Pertinent Subjects  analysis and design methods, real-time systems, design patterns. 

1. Introduction  

Reactive systems and real-time systems play an important role in many technological advents. 

The Real time aspect is critical in such systems as chemical processing, road-traffic, nuclear 
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reactions, satellite control, and airplanes and missile navigation. There is general consensus in the 

software and control systems literature [9] that real-time systems are difficult to model, specify, and 

design. This is due to the fact that issues such as concurrency, synchronization among processes, 

and real-time constraints must be expressed explicitly and unambiguously. It is an important and 

challenging task to develop an intuitive and easy-to-use, yet comprehensive and concise method for 

specifying such systems. 

Reactive systems  [5] are systems which are event-driven, continuously having to react to 

external and internal stimuli. The behavior of reactive systems cannot be specified by merely giving 

the inputs and outputs of the system. There is a need to represent the control component which 

determines the order and timing of processes. One customary way of expressing a system's 

response to events is by applying a set of Event-Condition-Action (ECA) rules. These rules specify 

that a process (action) in a reactive system is executed when the triggering event occurs, provided 

the conditions guarding the process execution are fulfilled. 

Real-time systems  constitute a subset of reactive systems, in which timing constraints may be 

quantitative. The constraints may be on the time between an event and the system's response, on 

the execution time of a process, on the time the system stays in a specific state, etc. 

This research paper presents OPM/T  a real-time extension to the Object-Process 

Methodology (OPM) [1]. The paper is organized as follows. Section 2 briefly surveys specification 

methods for reactive and real-time systems. Section 3 introduces and demonstrates the basics of 

OPM and OPM/T. Section 4 describes the details of the OPM/T specification of a telephone call 

process, whichdemonstrates the use and benefits of OPM/T. A discussion concludes the paper. 
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2. Specification Methods for Reactive and Real-Time Systems 

Specification of reactive and real-time systems is currently done in a number of methods, which 

can be roughly divided into two groups [9]. The first group consists of graphical methods, while the 

second one is based on logics and algebras.  Following is a comparison of the different specification 

methods. The methods are compared in terms of their ability to model real-time systems and verify 

the specification, and their usefulness as providers of a sound basis for design and implementation. 

Graphical methods used for specification of real-time systems can be categorized as (1) system 

structure, function, and dynamics modeling methods, (2) methods that specify system dynamics only, 

and (3) real-time design methods. The first group of methods includes, among others, Object 

Oriented Analysis (OOA), Object Modeling Technique (OMT) [11], Object Oriented Software 

Engineering (OOSE), Object Life Cycles, and Object Oriented System Analysis (OSA) [4], 

reviewed in [2]. The methods belonging to this category describe a system from three different 

aspects: structural — objects and the relationships among them, using mainly ERDsEntity-

Relationship Diagrams of various forms, functional — the processes executed in the system, 

including their inputs and outputs, using mainly DFDsData Flow Diagrams, and dynamic — 

control of process execution and changes in an object's state, using methods based on Finite State 

Machines and their elaborations, such as Statecharts.  

While these methods are easy to use, and their resulting specification can be understood by non-

experts, they suffer from two main disadvantages. First, they do not fully support expression of 

temporal constraints and reference to events. Second, to specify a system, these methods use a 

combination of at least three models, each describing a different aspect of the system. 

Incompatibility problems, such as mismatches among names of objects and processes are more 
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likely to occur when more than one model is used. Much more problematic is the integration of the 

different models that describe different aspects of the system which is seldom explicit. Hence, the 

difficult task of mental integration has to be done by the analyst and the audience to which the 

analysis is intended. Except for OSA, all system structure, function, and dynamics modeling methods 

have no formal semantics and no support for formal verification. OSA [4] can support validation 

based on prototype execution of analysis application models. Some of the modeling methods 

discussed above are supported by CASE tools, which are supposed to facilitate the transition from 

specification to design, and from design into executable code. 

Statecharts [5], Modecharts [8] and Petri Nets [10] are methods that specify system dynamics 

only. Both Statecharts and Modecharts are based on Finite State Machines, but they are also 

capable of hierarchical and structural decomposition into sub-states, which may coexist in parallel or 

exhibit an exclusive-or (XOR) relationship. Statecharts have been extended in [3] so as to express 

quantitative timing constraints. STATEMATE [6], the graphical tool which implements Statecharts, 

has an automated simulation tool that allows the user to execute his/her model. Modecharts [8] are 

capable of expressing quantitative sporadic and periodic timing constraints. Their specification is 

done in Real Time Logic (RTL) [9]. Although both Statecharts and Modecharts are formal methods, 

formal verification is not yet supported for their resulting specifications. 

Petri Nets [10] is a formal graphical language that can express concurrency, nondeterminism, 

and cause-and-effect relationships between events and states. Timed Petri Nets were developed to 

express temporal constraints [9]. Petri Nets are especially useful for performance evaluation of 

modeled systems. They can be formally checked for boundedness, safety, and freedom from 

deadlock. Invariants can be checked for small systems. But Petri Nets can overkill if the system is 

too simple, while if the system is too complex, timing can become obscured. 
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Jackson System Development (JSD) [7] and Sanden's Entity-Life Modeling [12] are real-time 

design methods that can also be used for specification. Both methods focus on the implementation 

domain. The graphical diagrams these methods yield present the different tasks performed by 

objects and the communication among them. In addition to the graphical diagrams, these methods 

also rely heavily on pseudocode, which is hard to follow and use. The advantage of using 

pseudocode is that the specification can potentially be converted to executable code.  

Logics and algebras used for specification of real-time systems are reviewed by Ostroff in [9]. 

The main advantages of using logics and algebras in specification of systems are that any temporal 

property can be specified, and that the specification can be verified for correctness by mathematical 

methods. Nevertheless, the task of specifying a system in logic is very difficult, and the resulting 

specification is hard to follow and understand by non-experts. Mechanical theorem provers have 

failed to be of much help due to the inherent complexity of testing validity for even the simplest 

logics. There are no available tools yet for design and implementation of specifications given in logics 

and algebras.  

3. The Object-Process Methodology (OPM) and OPM/T 

The Object-Process Methodology (OPM) [1] incorporates the static-structural and dynamic-

procedural aspects of a system into a single unifying model. OPM achieves this by treating both 

objects and processes as things (entities) which have equal status. OPM handles complex systems 

by using recursive seamless scaling. It is suitable both for system analysis and system design, and 

enables smooth transition between theses phases. 

In OPM, objects are viewed as persistent entities interacting with each other through 

processestransient entities that affect objects by changing their state. Object-Process Diagrams 
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(OPDs) enable us to describe things (objects and processes) and how they interact with each other. 

Things can be simple or compound. A compound thing is a thing which is a generalization of other 

things, or an aggregation of other things, or is characterized by other things. Objects may serve as 

enablers  instruments or intelligent agents, which are involved in a process without changing their 

state, or they may be affected (or generated or consumed) by a process. OPDs can depict both 

sequential and parallel processes, and accommodate expressions of branching. 

OPM/T is an extension of OPM for specification of reactive and real-time systems. The OPM/T 

functionality includes triggering events, guarding conditions, temporal constraints, and timing 

exceptions. Triggering events can be explicitly represented in OPDs by adding information to the 

procedural link directed from the triggering object to the corresponding triggered process. As shown 

in Figure 1, the letter e (for "event") added within the circle of an enabling link (agent or instrument), 

or next to the arrowhead of an effect link, specifies the fact that the link is a triggering event. The 

event can also be explicitly specified in text (e.g., “e: digit dialed”), which is recorded along the 

corresponding procedural link.  

Guarding conditions are specified in a manner similar to that of events. The letter "c" is recorded 

within the circle of an enabling link or next to the arrowhead of an effect link connecting the object 

state that serves as a condition guarding the execution of a process. Figure 1 shows an OPD 

featuring a triggering event and guarding condition of a Dialing process. It specifies the fact that on 

the event of a digit dialed by the Caller, the Dialing process is triggered under the condition that the 

Caller's Line is in the "dial tone" state. The Dialing process changes the state of the Caller's Line to 

"trying to connect". 
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Caller’s Line
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Figure 1: An OPD featuring the triggering event and guarding conditions of the Dialing 

process. 

Temporal constraints are expressed by specifying an interval "(x,y)", where 0 ≤ x ≤ y. x and y 

represent the lower and upper bounds of the constraint, respectively. There are three different kinds 

of temporal constraints:  

• process duration constraint, in which  the interval (x,y) is recorded inside the constrained process, as 

in Figure 2(a). 

• state duration constraint, in which the interval (x,y) is recorded inside the constrained object state, as 

in Figure 2(b). 

•  reaction time constraint, in which the interval (x,y) is recorded above the procedural link connecting 

the triggering object to its triggered process, as in Figure 2(c): 

P1
(x,y)

B1
S1

(x,y) S2
Triggering

Object e
Triggered
Process

(x,y)

(a) (b) (c)  

Figure 2: Expression of temporal constraints in OPDs. (a) process duration constraint; (b) 

state duration constraint; (c) reaction time constraint. 

A timing exception is a violation of a temporal constraint. Certain exceptions are quite common 

and acceptable, while others may be rare, albeit hazardous. In case such an exception occurs, it is 
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desirable to perform a suitable exception handling process. In order to represent exception triggers, 

the Exception Link, denoted as |, adopted from [4], is used to connect the violated constraint 

to the exception triggered process.  

4.  The Phone Call Process and Its OPM/T Specification 

Figures 3 through 6 constitute the OPD set specifying a simplified process of a phone call. 

Figure 3 is a top-level OPD, which presents the dialing and connecting process. It shows all the 

objects which take part in this process: Caller, Callee, Switchboard, and Operator, which enable the 

Dialing and Connecting process without being affected by it, along with Caller's Line and Dialed 

Line, which are affected by that process. The paths marked by the letters 'a' and 'b' show the 

execution thread, i.e., the order of effect links which connect the Dialing and Connecting process 

to the two affected objects Caller's Line and Dialed Line. The structural links between Caller and 

Caller's Line, between Callee and Dialed Line, between Caller's Line and Switchboard, and 

between Dialed Line and Switchboard are also shown in this top-level OPD and in lower level 

OPDs with their name recorded along the links. Processes with a bold contour are zoomed in 

(scaled up) in other, lower level, OPDs. 

Figure 4 is a blow-up of the Dialing and Connecting process. This process is initiated when 

the caller lifts up the receiver. The letter e, depicted at the process end of the agent link emanating 

from the object Caller to the process Dial Tone Sending (P1), symbolizes this triggering event. The 

event e is also explicitly expressed along the agent link as "e: receiver lifted". The interval (0,2), 

recorded next to this event name, specifies the constraint on the reaction time between the event and 

the triggered process. The meaning of this constraint is that the event e triggers the
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Effect Link
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Structural Link

 

process Dial Tone Sending (P1) within 2 seconds of its occurrence. When invoked, process P1 

changes the Caller’s Line state from "free" to "dial tone", which is a sub-state within the "dialing" state, 

which, in turn, is a substate of the "busy" state of Caller’s Line. The "dial tone" state has a (0, 30) 

duration constraint attached to it, requiring that once the Caller’s Line has entered the "dial tone" state, 

it must remain there for no longer than 30 seconds. Otherwise, an exception, symbolized by the 

Exception Link, occurs. The Exception triggers the Reorder Tone Sending process (P6), which sends 

the reorder tone and changes the Caller’s Line state to "faulty". If the caller does dial a digit within 30 

seconds after the Caller’s Line has entered the "dial tone" state, then the Dialing process (P2) is 

initiated. This process has a duration constraint restricting its total duration to a maximum of 120 

seconds. If the process does not fulfill this restriction, an exception occurs, which activates the Reorder 

Tone Sending process (P6) discussed above. Note that the default logical relation among two or more 

Figure 3: A top-level OPD of the Dialing and 
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triggering events of a single process is OR, meaning that any one of them alone can trigger 

the process. Thus, for example, the occurrence of any one of the triggering events of P6 is sufficient for 

its activation. 
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e

e
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Trying to 
 Connect
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Dialing and Connecting

c
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Figure 4: Blow-up of the Dialing and  Connecting  process 

The Dialing process (P2) is blown-up in Figure 5. Dialing a digit when the Caller’s Line is in the 

"dial tone" state creates an event which triggers the Dialing Initiation process (P2.1). This process 

Initializes to 1 the object Counter, which counts the number of digits dialed, saves the dialed digit in the 

object Accumulated Dialed Number, and changes the Caller's Line state to the "waiting for operator" 

state, if the dialed digit was zero, or to the "wait for next digit" state, otherwise. For simplification, we 

assume that the dialed number must have 7 digits if it is local (does not start with a zero) or 9 digits 
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otherwise. Therefore, the Dialing Initiation process sets the Stopping Condition value to v = 

9 or to v = 7, depending on the first digit dialed. The next three processes are executed in a loop, which 

collects the rest of the digits which constitute the telephone number. The first process, Comparison 

(P2.2), is invoked by the termination of process



 11

a

c

eCaller Dialing
Initiation

P2.1

c

e: digit dialed

Digit
Counter

< v >= v

Comparison
P2.2

Stopping 
Condition

v

Digit 
Collection

P2.3
e

e: digit dialed Accumulated
Dialed 
Number

Incrementation
P2.4

digit=0

LEGEND

Agent Link

Effect Link

XOR Link

Invocation Link

Instrument Link

Event             e
Condition         c

P2.5
Termination

e

Caller’s Line

busy

dialing

free

 wait 
for next 
digit

(0.5, 20)

(0.5, 15)

faulty

dial
(0, 30)

tone

connected

trying to 
connect

waiting
 for

response
callee
busy

callee
free

ringing

c

zero
dialed

Dialing
(0, 120)

P2

 

Figure 5: Blow-up of the Dialing (P2) process. 

P2.1. This is marked by the invocation link emanating from P2.1 to P2.2. Comparison (P2.2) 

compares the Digit Counter's value, v, which holds the number of dialed digits, to the Stopping 

Condition value, which holds the expected number of digits (7 or 9) in the complete phone number that 

is being called. If the Digit Counter's value is equal to the Stopping Condition's value,  v, then the 

Termination process (P2.5) sets the Caller’s Line to the "waiting for response" state, marking the 

termination of the Dialing process (P2). If the Digit Counter's value is smaller than the Stopping 

Condition's value, then the event of dialing a digit, under the conditions that the digit was dialed either 
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between 0.5 seconds and 20 seconds after entering the Caller’s Line "wait for next digit" 

state, or between 0.5 seconds and 15 seconds after entering the Caller’s Line "wait for operator" 

state, triggers the Digit Collection process (P2.3). This process adds the dialed digit to the 

Accumulated Dialed Number and sets the Caller’s Line to the "wait for next digit" state. Note that 

setting an Object into a state initiates the state's duration measurement. Upon its termination, process 

P2.3 triggers, via the invocation link, the Incrementation process (P2.4). The Incrementation process 

(P2.4), increments the Digit Counter by 1. The Invocation Link now passes the control back to the 

Comparison process (P2.2), the output of which decides whether the dialing process should continue 

or stop. The duration constraint on the Caller’s Line "wait for next digit" state, (0.5, 20), constrains 

the duration of time spent at that state. Dialing a digit too fast after the dialing of a previous digit (i.e., 

less than 0.5 seconds after the entrance to the "wait for next digit" state) generates an event that is 

ignored. Failure to dial the next digit within 20 seconds creates an exception, denoted by the Exception 

Link, shown in Figure 4 emanating from the "wait for next digit" state. This Exception triggers the 

Reorder Tone Sending process (P6). Similarly, the duration constraint of the Caller’s Line "wait for 

operator" state, (0.5, 15), constrains the duration of time spent at that state.  

Again, dialing a digit too fast after the dialing of a previous digit (less than 0.5 seconds after the 

entrance to the "wait for operator" state) generates an event that is ignored. Failure to dial the next digit 

within 15 seconds creates an exception, denoted by the Exception Link shown in Figure 4 emanating for 

the "wait for operator" state. This Exception triggers the Operator Assisted Call process (P7). 

As can be seen in the OPD of Figure 4, the entrance of the Caller’s Line to the "waiting for 

response" sub-state in the "trying to connect" state, marking the successful termination of the Dialing 

process (P2), is an event which triggers the Trying to Connect process (P3). As a simplification, it is 
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assumed that every dialed number is legal. The Trying to Connect process (P3) is blown up in 

the OPD of Figure 6. 
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Figure 6: Blow-up of the Trying to Connect (P3) process 

As shown, the first process occurring is Dialed Line State Check (P3.1) which checks whether the 

Dialed Line state is free or busy. This  process is carried out only if the Caller's Line is in the "waiting 

for response" state, which results from the successful termination of the Dialing process (P2). If the 

Dialed Line is in the "busy" state, then the Busy Signal Sending process (P3.3) changes the Caller's 

Line into the "callee busy" state. If the state of the Dialed Line is "free", then the Ring Tone Sending 
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process (P3.2) changes the Dialed Line into the "ringing" state. Note that since the Dialed Line 

"busy" and "free" states are mutually exclusive, only one of the processes P3.2 and P3.3 can be 

executed, so this is in fact an example of branching. Entering the "ringing" state generates an event 

which triggers the Ringback Tone Sending process (P3.4), which sets the Caller's Line into the "callee 

free" state within 0.5 seconds. This is specified by the reaction time constraint (0, 0.5), depicted above 

the instrument link emanating from the Dialed Line "ringing" state to the Ringback Tone Sending 

process (P3.4).  

Turning back to Figure 4, when the Callee lifts up the receiver, then if the Caller's Line is in the "callee 

free" state and the Dialed Line is in the "ringing" state, then an event occurs which triggers the 

Connecting process (P4). This process sets the Caller's Line and the Dialed Line into the "connected" 

states. On the event of "receiver on hook", which happens when the Caller’s Line is at any state, the 

Hang-up process (P5) is triggered. This process changes the Caller's Line to the "free" state, and sets 

the Dialed Line into its previous state, as denoted by the letter "H" (short for History) next to the effect 

link emanating from the Hang-up process towards the Dialed Line Object. This notation is borrowed 

from Harel's Statecharts [5]. 

Discussion 

OPM/T is a real-time extension of OPM  a visual methodology which describes both the static-

structural and the dynamic-procedural aspects of systems in a single model. OPM/T is designed to 

express triggering events, guarding conditions, timing constraints, timing exceptions, and flow of control 

constructs. The telephone call process example demonstrates how a real-time system can be explicitly 

specified, and clearly understood and communicated among analysts, designers, and implementors, in 
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OPM/T. OPM/T helps clarifying and communicating the structure and behavior of the 

entire system in the following ways:  

1. Being as extension of OPM, the system's static-structural and functional-behavioral aspects are 

incorporated into a single model. Therefore, no model switching and mental transformations are 

required in order to understand the system as a whole. The only passages are made between scaling 

levels in order to see more or less details of some parts of the system. Furthermore, working within a 

single model, it is less likely to generate and encounter incompatibilities 

2. Following the default scenario (normal sequence of processes and events) is easy, since it is reflected 

by the top-to-bottom order in which the processes in OPDs are depicted. 

3. For each process, all relevant information is readily visible. This includes the triggering events, 

guarding conditions, timing constraints, all the affected or consumed objects which serve as the 

process inputs, the affected or generated output objects, and the enablersobjects that participate 

in the process without changing their state. State changes of the affected objects that result from the 

process execution are also shown explicitly. 

4. The system's static-structural and functional-behavioral aspects are presented from a top-level view, 

and zoomed in (scaled up) to provide more and more details. Scaling makes it possible to depict 

only those objects that participate in the processes shown in an OPD. These objects are scaled up to 

any desired level of detail that exposes all the relevant parts and/or specializations and/or features 

(attributes and methods) of each object. 

5. Processes in OPDs group together all objects which are transformed by the same event (which may 

be simple or compound). For example, the triggering event of the Connecting process, (P4) affects 
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both the Caller's Line and the Dialed Line. This grouping is also useful for expressing 

synchronization of the different reactions that trigger the process and/or are triggered by it. 

OPM and OPM/T are especially suitable for specifying systems which contain many objects and/or 

processes, and in particular if they need to be specified at different detail levels which are taken care of 

by OPM's scaling option. 

OPM/T supplies some very useful design patterns. One example of such a design pattern is 

triggering of an internal system process by an external event  in our case, the Dial Tone Sending 

process is triggered by the event of the receiver being lifted, and the Dialing process is triggered by the 

event of dialing a digit. A distinction between different types of triggering events (external events, events 

that mark the change in an object's state, events that mark the termination of a process, and exception 

events) makes it easier for analysts and/or designers of systems to specify their intended meaning. 

Another example of a very useful design pattern is a for-loop iteration, shown in the OPD of Figure 

5, which is a blow-up of the Dialing process. This process behaves like a loop which iterates 7 or 9 

times depending on the number dialed being local or long-distance.  

Refinement of OPM/T, including identification, characterization, and classification of real-time design 

patterns is currently under way. The implementation of real-time extensions is being incorporated into 

OPCATObject Process CAse Tool, such that version 2.0 is designed to feature significant real-time 

functionality. 
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