Extending the Object-Process M ethodology to Handle Real Time

Systems

Mor Peleg and Dov Dori

Faculty of Indudtrid Engineering and Management
Technion¥s lsradl Ingtitute of Technology
Haifa 32000, |sragl

{mor, dori} @ie.technion.ac.il; Fax 972-4-8235194 , Tel: 972-4-8294409 / 2921

Abstract

There is generd consensus in the software literature that red-time systems are difficult to
modd, specify, and desgn. It is an important and chalenging task to develop an intuitive and easy-
to-use, yet coherent and concise method for specifying such sysems. The Object-Process
Methodology (OPM) graphicaly specifies systemsin a single unified modd that describes the Satic-
gructurd and behaviord-procedura aspects of a system by a set of Object-Process Diagrams. In
this research paper we present OPM/T, as an extension of OPM for specification of reactive and
real-time systems. A detailed telephone cal example demongtrates the power of OPM/T to express

such notions as timing condraints, events, conditions, exceptions, and control flow congtructs.
Pertinent Subjects % andyds and design methods, red-time systems, design patterns.
1. Introduction

Reactive systems and red-time systems play an important role in many technologica advents.

The Red time aspect is criticd in such sysems as chemica processng, road-traffic, nuclear



reactions, satellite control, and arrplanes and missle navigation. There is generd consensus in the
software and control systems literature [9] that red-time systems are difficult to model, specify, and
design. This is due to the fact that issues such as concurrency, Synchronization among processes,
and red-time congraints must be expressed explicitly and unambiguoudy. It is an important and
chdlenging task to develop an intuitive and easy-to-use, yet comprehensive and concise method for

specifying such sysems.

Reactive systems [5] are systems which are event-driven, continuoudy having to react to
externd and internd stimuli. The behavior of reactive sysems cannot be specified by merdy giving
the inputs and outputs of the system. There is a need to represent the control component which
determines the order and timing of processes. One customary way of expressng a system's
response to events is by gpplying a set of Event-Condition+Action (ECA) rules. These rules specify
that a process (action) in a reactive system is executed when the triggering event occurs, provided

the conditions guarding the process execution are fulfilled.

Real-time systems congtitute a subset of reactive systems, in which timing congraints may be
guantitative. The congraints may be on the time between an event and the system's response, on

the execution time of a process, on the time the system stays in a specific state, etc.

This research paper presents OPM/T 3. a red-time extenson to the Object-Process
Methodology (OPM) [1]. The paper is organized as follows. Section 2 briefly surveys specification
methods for reactive and red-time systems. Section 3 introduces and demondirates the basics of
OPM and OPM/T. Section 4 describes the details of the OPM/T specification of a telephone cdll

process, whichdemonstrates the use and benefits of OPM/T. A discussion concludes the paper.



2. Specification Methods for Reactive and Real-Time Systems

Specification of reactive and red-time sysemsiis currently done in a number of methods, which
can be roughly divided into two groups [9]. The first group consists of graphica methods, while the
second oneis based on logics and agebras. Following is a comparison of the different specification
methods. The methods are compared in terms of their ability to mode red-time sysems and verify

the specification, and their usefulness as providers of a sound basis for design and implementation.

Graphica methods used for specification of red-time systems can be categorized as (1) system
gructure, function, and dynamics modeling methods, (2) methods that specify system dynamics only,
and (3) red-time design methods. The first group of methods includes, among others, Object
Oriented Analysis (OOA), Object Moddling Technique (OMT) [11], Object Oriented Software
Engineering (OOSE), Object Life Cycles, and Object Oriented System Andyss (OSA) [4],
reviewed in [2]. The methods belonging to this category describe a system from three different
aspects dructural — objects and the rdationships among them, usng mainly ERDsY4 Entity-
Rdationship Diagrams of various forms, functiond — the processes executed in the system,
including their inputs and outputs, usng manly DFDs¥2 Data Flow Diagrams, and dynamic —
control of process execution and changes in an object's state, usng methods based on Finite State

Machines and their daborations, such as Statecharts.

While these methods are easy to use, and their resulting specification can be understood by non-
experts, they suffer from two main disadvantages. First, they do not fully support expresson of
tempora congraints and reference to events. Second, to specify a system, these methods use a
combination of a least three modds, each describing a different aspect of the system.

Incompatibility problems, such as mismatches among names of objects and processes are more



likely to occur when more than one modd is used. Much more problematic is the integration of the
different models that describe different aspects of the system which is seldom explicit. Hence, the
difficult task of menta integration has to be done by the andys and the audience to which the
andysisisintended. Except for OSA, al system sructure, function, and dynamics modeing methods
have no forma semantics and no support for formd verification. OSA [4] can support vaidation
based on prototype execution of anayss gpplication models. Some of the modding methods
discussed above are supported by CASE tools, which are supposed to facilitate the trandtion from

gpecification to desgn, and from design into executable code.

Statecharts [5], Modecharts [8] and Petri Nets [10] are methods that specify system dynamics
only. Both Statecharts and Modecharts are based on Finite State Machines, but they are dso
capable of hierarchica and structura decomposition into sub-gates, which may coexist in pardld or
exhibit an exdusve-or (XOR) relationship. Statecharts have been extended in [3] so as to express
quantitative timing congraints. STATEMATE [6], the graphicd tool which implements Statecharts,
has an automated smulation tool that allows the user to execute higher model. Modecharts [8] are
capable of expressng quantitative sporadic and periodic timing congraints. Their specification is
donein Red Time Logic (RTL) [9]. Although both Statecharts and Modecharts are forma methods,

formd verification is not yet supported for ther resulting specifications.

Petri Nets [10] is a formd graphicd language that can express concurrency, nondeterminism,
and cause-and-effect relationships between events and states. Timed Petri Nets were developed to
express tempora congraints [9]. Petri Nets are especidly useful for performance evauation of
moddled sysems. They can be formally checked for boundedness, safety, and freedom from
deadlock. Invariants can be checked for smal systems. But Petri Nets can overkill if the system is

too smple, while if the system istoo complex, timing can become obscured.



Jackson System Development (JSD) [7] and Sanden's Entity-Life Modeling [12] are red-time
design methods that can dso be used for specification. Both methods focus on the implementation
domain. The gragphicd diagrams these methods yidd present the different tasks performed by
objects and the communication among them. In addition to the graphicd diagrams, these methods
a0 rey heavily on pseudocode, which is hard to follow and use. The advantage of using

pseudocode is that the specification can potentiadly be converted to executable code.

Logics and algebras used for specification of red-time systems are reviewed by Ogtroff in [9].
The main advantages of usng logics and dgebras in pecification of systems are that any tempord
property can be specified, and that the specification can be verified for correctness by mathematical
methods. Nevertheless, the task of specifying a system in logic is very difficult, and the resulting
gpecification is hard to follow and understand by non-experts. Mechanica theorem provers have
faled to be of much help due to the inherent complexity of testing vdidity for even the amplest

logics. There are no available tools yet for design and implementation of specifications given in logics

and algebras.

3. The Object-Process M ethodology (OPM) and OPM/T

The Object-Process Methodology (OPM) [1] incorporates the static-structurd and dynamic-
procedurd aspects of a system into a single unifying modd. OPM achieves this by treating both
objects and processes as things (entities) which have equa status. OPM handles complex systems
by using recursve seamless scding. It is suitable both for sysem analysis and system design, and

enables smooth trangtion between theses phases.

In OPM, objects are viewed as persgent entities interacting with each other through

processes¥s trangent entities that affect objects by changing their state. Object- Process Diagrams



(OPDs) enable us to describe things (objects and processes) and how they interact with each other.
Things can be smple or compound. A compound thing is a thing which is a generdization of other
things, or an aggregation of other things, or is characterized by other things. Objects may serve as
enablers % ingruments or intelligent agents, which are involved in a process without changing their
state, or they may be affected (or generated or consumed) by a process. OPDs can depict both

sequentid and pardlel processes, and accommodate expressions of branching.

OPM/T isan extenson of OPM for specification of reactive and real-time systems. The OPM/T
functiondity includes triggering events, guarding conditions, tempord condraints, and timing
exceptions. Triggering events can be explicitly represented in OPDs by adding informetion to the
procedurd link directed from the triggering object to the corresponding triggered process. As shown
in Figure 1, the letter e (for "event") added within the cirdle of an enabling link (agent or instrument),
or next to the arrowhead of an effect link, specifies the fact that the link is a triggering event. The
event can aso be explicitly specified in text (eg., “e: digit dialed”), which is recorded dong the

corresponding procedurd link.

Guarding conditions are specified in amanner Smilar to that of events. The letter "'c" is recorded
within the dircle of an enabling link or next to the arrowhead of an effect link connecting the object
date that serves as a condition guarding the execution of a process. Figure 1 shows an OPD
featuring a triggering event and guarding condition of a Dialing process. It specifies thefact that on
the event of a digit dided by the Cdler, the Dialing processis triggered under the condition that the
Cdler's Lineisin the "dial tone" state. The Dialing process changes the state of the Cdler's Lineto

"trying to connect".



Caller

e: digit dialed

Caller’s Line
(  dialtone

(trying to connect]

[ connected |

Figure ¥ An OPD featuring the triggering event and guarding conditions of the Dialing

Process.

Tempora condraints are expressed by specifying an intervd "(x,y)", where O £ X £ y. x andy
represent the lower and upper bounds of the congtraint, respectively. There are three different kinds

of tempord condrants.

process duration congraint, in which theinterva (X,y) is recorded inside the congtrained process, as

in Figure 2(a).

date duration congraint, in which the interva (x,y) is recorded insde the constrained object state, as

in Figure 2(b).

reaction time condraint, in which the interva (X,y) is recorded above the procedurd link connecting

the triggering object to its triggered process, as in Figure 2(c):

Bl
S1 Triggerin (x.y) Triggered
(R

(@) (b) (c)

Figure 2. Expression of tempora constraints in OPDs. (a) process duration congtraint; (b)

state duration constraint; (c) reaction time constraint.

A timing exception isaviolation of atempora congraint. Certain exceptions are quite common

and acceptable, while others may be rare, abeit hazardous. In case such an exception occurs, it is



desirable to perform a suitable exception handling process. In order to represent exception triggers,
the Exception Link, denoted as ¥ [%, adopted from [4], is used to connect the violated constraint

to the exception triggered process.

4. The Phone Call Process and I1ts OPM/T Specification

Figures 3 through 6 conditute the OPD set specifying a smplified process of a phone call.
Figure 3 is a top-levd OPD, which presents the diding and connecting process. It shows dl the
objects which take part in this process. Cdler, Cdlee, Switchboard, and Operator, which enable the
Dialing and Connecting process without being affected by it, dong with Cdler's Line and Dided
Line, which are affected by that process. The paths marked by the letters 'a and 'b' show the
execution threed, i.e., the order of effect links which connect the Dialing and Connecting process
to the two affected objects Caler's Line and Dided Line. The structura links between Caler and
Cdler's Line, between Cdlee and Dided Line, between Caler's Line and Switchboard, and
between Dided Line and Switchboard are dso shown in this top-leved OPD and in lower leve
OPDs with their name recorded aong the links. Processes with a bold contour are zoomed in

(scaed up) in other, lower level, OPDs.

Figure 4 is a blow-up of the Dialing and Connecting process. This process is initiated when
the caller lifts up the receiver. The letter e, depicted at the process end of the agent link emanating
from the object Caller to the process Dial Tone Sending (P1), symbolizes this triggering event. The
event e is ds0 explicitly expressed dong the agent link as 'e: receiver lifted". The interva (0,2),
recorded next to this event name, specifies the congtraint on the reaction time between the event and

the triggered process. The meaning of this condraint is that the event e triggers the



connected to . A connected to LEGEND
— Swi t chboar d | Agent Link e
Instrunent Link —o
Ef fect Link —>
Structural Link —>

Di aling
and Connecting

Cal | er 's Li ne Di al ed Line

Oper at or

Figure 3: A top-level OPD of the Dialing and

process Dial Tone Sending (P1) within 2 seconds of its occurrence. When invoked, process P1
changes the Caller’s Line tate from "free” to "dial tone", which is a sub-state within the "dialing” state,
which, in turn, is a substate of the 'busy" dtate of Caller’s Line. The 'tial tone" state has a (0, 30)
duration congtraint attached to it, requiring that once the Caler’'s Line has entered the "dial tone" State,
it must remain there for no longer than 30 seconds. Otherwise, an exception, symbolized by the
Exception Link, occurs. The Exception triggers the Reorder Tone Sending process (P6), which sends
the reorder tone and changes the Cdler’s Line state to 'faulty”. If the caler does did a digit within 30
seconds after the Caller’s Line has entered the tial tone" state, then the Dialing process (P2) is
initiated. This process has a duration congraint redricting its total duration to a maximum of 120
seconds. If the process does not fulfill this restriction, an exception occurs, which activates the Reorder

Tone Sending process (P6) discussed above. Note that the default logical relation among two or more



10
triggering events of a sngle process is OR, meaning that any one of them aone can trigger

the process. Thus, for example, the occurrence of any one of the triggering events of P6 is sufficient for

its activetion.
< connected to
CaTTer¥ Tine L rected 1l syt chboard Cal | ees Line
\O owns
>l free Di |P1'|' eNeceiver lifted f
] I a one = 1V | ree
) [ (0.2 Cal | e | I
Sendi ng
e —
busy busy
dialing f
(0, 30) l |
dial | /
tone P2 e:digit dialed
(0.5, 20) Di al i ng -
wait for
next (0, 120)
digit -— dialing
~ P6
Reorder Tohe |
endi ng '
0.5, 15) . .
zero D aling and Connectin
di al ed P7
Qper at or
N’ | Assi st ed )
- o
trying to
connect connect
Wi ting vl L1 ng
for \ for
response \ € response
- \ _ P3
rying to 7 ringi ng
\ nnect
free c ¢ m
call ee
. \Fly
| S— i
Connecting
| connect ed ’|= @ reciev i ft I connect ed
\ / > Cal | eg owns /
7 P5
@ e: Cl ever on noo

i

Figure 4: Blow-up of the Dialing and Connecting process

The Dialing process (P2) is blown-up in Figure 5. Diding a digit when the Cdler’s Line is in the
"dial tone" date creates an event which triggers the Dialing Initiation process (P2.1). This process
Initidizes to 1 the object Counter, which counts the number of digits dided, saves the dided digit in the
object Accumulated Didled Number, and changes the Caller's Line State to the "waiting for operator™
date, if the dided digit was zero, or to the "wait for next digit" Sate, otherwise. For smplification, we

assume that the dided number must have 7 digits if it is loca (does not art with a zero) or 9 digits



11
otherwise. Therefore, the Dialing Initiation process sets the Stopping Condition valueto v =

9 or to v =7, depending on thefirst digit dialed. The next three processes are executed in aloop, which
collects the rest of the digits which condtitute the telephone number. The first process, Comparison

(P2.2), IS invoked by the termination of process



11

Cal |l ers Line

LEGEND
Agent Li nk

P2.1
Di al i ng .
Initiatiom— | I nstrunent Link
# Ef fect Link

i Di git

di al o ) .

tone Counter | T I nvocation Link
Event

(0.5,i 20)

! f Condi ti on
or next /

free

e: digit dial gd

Cal | er

4 )

busy
di aling

XCR Li nk
(0, 30)

KIRERY

digit
(0.5, 15) /

zero _ _17
di al ed |« digif=0

St oppi ng
Condi tion
\Y

faulty

e digit dialed

@

Accunul at ed
D al ed
Nunber

P2.5 ©
Term natio

connect ed

A

Arying to ™

connect

Wa ng

\x

esponse
callee
busy
call ee
free

Figure 5: Blow-up of the Dialing (P2) process.

P2.1. This is marked by the invocation link emanating from P21 to P2.2. Comparison (P2.2)
compares the Digit Counter's value, v, which holds the number of dided digits, to the Stopping
Condition vaue, which holds the expected number of digits (7 or 9) in the complete phone number that
is being cdled. If the Digit Counter's vaue is equd to the Stopping Condition's vaue, v, then the
Termination process (P2.5) sets he Cdler's Line to the "waiting for responss” state, marking the
termination of the Diding process (P2). If the Digit Counter's vaue is smdler than the Stopping

Condition's value, then the event of dialing a digit, under the conditions that the digit wes dided either



12
between 0.5 seconds and 20 seconds after entering the Cdler’s Line tWait for next digit"

dtate, or between 0.5 seconds and 15 seconds after entering the Caller's Line ‘wait for operator”
date, triggers the Digit Collection process (P2.3). This process adds the dided digit to the
Accumulated Dided Number and sets the Cdler’s Line to the Wwait for next digit" state. Note that
seiting an Object into a date initiates the state's duration measurement. Upon its termination, process
P2.3 triggers, via the invocation link, the Incrementation process (P2.4). The Incrementation process
(P2.4), increments the Digit Counter by 1. The Invocation Link now passes the control back to the
Comparison process (P2.2), the output of which decides whether the diding process should continue
or stop. The duration congraint on the Caler’s Line 'wait for next digit" state, (0.5, 20), constrains
the duration of time spent & that State. Dialing a digit too fast after the diding of a previous digit (i.e,
less than 0.5 seconds after the entrance to the wait for next digit" state) generates an event that is
ignored. Falure to did the next digit within 20 seconds crestes an exception, denoted by the Exception
Link, shown in Figure 4 emanating from the Wwait for next digit" date. This Exception triggers the
Reorder Tone Sending process (P6). Smilarly, the duration congraint of the Cdler’s Line 'wait for

operator"” sate, (0.5, 15), congtrains the duration of time spent at that State.

Agan, diding a digit o fast after the diding of a previous digit (less than 0.5 seconds after the
entrance to the "wait for operator” date) generates an event that isignored. Failure to did the next digit
within 15 seconds creates an exception, denoted by the Exception Link shown in Figure 4 emanating for

the "wait for operator” date. This Exception triggers the Operator Assisted Call process (P7).

As can be seen in the OPD of Figure 4, the entrance of the Caler's Line to the fwaiting for
response” sub-state in the "trying to connect™ state, marking the successful termination of the Dialing

process (P2), is an event which triggers the Trying to Connect process (P3). As a smplification, it is



13
assumed that every dided number is legd. The Trying to Connect process (P3) is blownupin

the OPD of Figure 6.

Swi t chboard

Di al ed Ling
Cal l er’s Line

bus
ey - /

trying to

trying to connect connect

free Wﬂifloirng calee| feal ree] [ qing I fe0mmect ed| |dialing ringing
response J | free busy
P3.1

Di al ed Ling
State Chedk

P3.4
Ri ngbac_k Tdne (0, 0.5)
Sendi ngt€
LEGEND

Instrunent Link —o
Ef fect Link —»

XCR Li nk -t
Event e
Condi tion Cc

Figure 6: Blow-up of the Trying to Connect (P3) process

As shown, the firgt process occurring is Dialed Line State Check (P3.1) which checks whether the
Dided Line date is free or busy. This processis carried out only if the Cdler's Line is in the "waiting
for response” date, which results from the successful termination of the Dialing process (P2). If the
Dided Line is in the busy" date, then the Busy Sgnal Sending process (P3.3) changes the Cdler's

Line into the 'callee busy" date. If the sate of the Dided Lineis 'free”, then the Ring Tone Sending



14
process (P3.2) changes the Dided Line into the "ringing" state. Note that since the Dided Line

"busy" and “free" dates are mutudly exclusive, only one of the processes P3.2 and P3.3 can be
executed, S0 this is in fact an example of branching. Entering the 'finging” State generates an event
which triggers the Ringback Tone Sending process (P3.4), which setsthe Caler's Line into the "callee
free" gtate within 0.5 seconds. This is specified by the reaction time congtraint (0, 0.5), depicted above
the insrument link emanating from the Dided Line "ringing" State to the Ringback Tone Sending

process (P3.4).

Turning back to Figure 4, when the Cdlee lifts up the recaiver, then if the Caller's Lineisin the "callee
free" date and the Dided Line is in the "ringing" date, then an event occurs which triggers the
Connecting process (P4). This process sets the Caller's Line and the Dialed Line into the "connected”
states. On the event of 'receiver on hook", which happens when the Cdler’s Line is & any date, the
Hang-up process (P5) is triggered. This process changes the Caller's Line to the 'free" state, and sets
the Dided Line into its previous Sate, as denoted by the letter "H" (short for History) next to the effect
link emanating from the Hang-up process towards the Diaed Line Object. This notation is borrowed

from Harel's Statecharts [5].

Discussion

OPM/T is a real-time extenson of OPM %, avisud methodology which describes both the Static-
dructurd and the dynamic-procedura aspects of systems in a sngle model. OPM/T is designed to
express triggering events, guarding conditions, timing congraints, timing exceptions, and flow of control
congtructs. The telephone call process example demonsirates how a real-time sysem can be explicitly

specified, and clearly understood and communicated among analysts, designers, and implementors, in



15
OPM/T. OPM/T hdps daifying and communicating the structure and behavior of the

entire sysem in the following ways.

1. Being as extenson of OPM, the system's datic-structurd and functiona-behaviora aspects are
incorporated into a sngle model. Therefore, no modd switching and menta transformetions are
required in order to understand the system as awhole. The only passages are made between scaling
levelsin order to see more or less details of some parts of the system. Furthermore, working within a

snglemodd, it isless likely to generate and encounter incompatibilities

2. Following the default scenario (norma sequence of processes and events) is easy, sinceit is reflected

by the top-to-bottom order in which the processesin OPDs are depicted.

3. For each process, dl rdevant information is reedily visble. This includes the triggering events,
guarding conditions, timing condraints, al the affected or consumed objects which serve as the
process inputs, the affected or generated output objects, and the enablers¥s objects that participate
in the process without changing their state. State changes of the affected objects that result from the

process execution are aso shown explicitly.

4. The sysem's datic-gtructural and functiona-behavioral aspects are presented from a top-levd view,
and zoomed in (scaled up) to provide more and more details. Scaling makes it possible to depict
only those objects that participate in the processes shown in an OPD. These objects are scaled up to
any desred levd of detail that exposes dl the relevant parts and/or specidizations and/or festures

(attributes and methods) of each object.

5. Processes in OPDs group together al objects which are transformed by the same event (which may

be smple or compound). For example, the triggering event of the Connecting process, (P4) affects



16
both the Caler's Line and the Dided Line. This grouping is aso ussful for expressng

synchronization of the different reactions that trigger the process and/or are triggered by it.

OPM and OPM/T are especidly suitable for specifying systems which contain many objects and/or
processes, and in particular if they need to be specified & different detail levels which are taken care of

by OPM's scaling option.

OPM/T supplies some very useful desgn patterns. One example of such a design pattern &
triggering of an internal system process by an externd event %4 in our case, the Dial Tone Sending
process is triggered by the event of the recaiver being lifted, and the Dialing processiis triggered by the
event of diding a digit. A digtinction between different types of triggering events (externd events, events
that mark the change in an object's sate, events that mark the termination of a process, and exception

events) makesit easer for analysts and/or designers of systems to specify their intended meaning.

Another example of a very ussful design peattern is a for-loop iteration, shown in the OPD of Figure
5, which is a blow-up of the Diding process. This process behaves like a loop which iterates 7 or 9

times depending on the number dided being locd or long-distance.

Refinement of OPM/T, including identification, characterization, and classfication of red-timedesign
patterns is currently under way. The implementation of red-time extensons is being incorporated into
OPCAT%a Object Process CAse Tool, such that verson 2.0 is designed to feature sgnificant red-time

functiondlity.

References

1. Dori, D. Object-Process Andyss: Maintaining the Balance Between System Structure and Behavior.

Journal of Logic and Computation 5, 2, (April 1995), 227-249.



17
2. Dori, D. and Goodman M. On Bridging the Andyss-Design and Structure-Behavior Grand

Canyons with Object Paradigms. Report on Object Analysis and Design 2,5, (January-February

1996), 25-35.

3. Drusnsky, D. and Hard, D. Usng Statecharts for Hardware Description and Synthesis. |EEE

Transactions on Computer-Aided Design 8, 7 (July 1989), 798-807.

4. Embley, D. W., Jackson, R.B. and Woodfield, S. N. Object-Oriented Systems Andyss. Is It or

Isn't It?, IEEE Software 12,4 (July 1995), 19-33.

5. Hardl, D., Statecharts: a Visud Formaism for Complex Systems, Sci. Comput. Program, Vol. 8

(1987), 231-274.

6. Hardl, D., Lachover, H., Naamad, A., Pnudi, A., Politi, M., Sherman, R., Shtull-Trauring, A. and
Trakhtenbrot, M., STATEMATE: A Working Environmert for the Development of Complex Systems.

|EEE Transactions on Software Engineering 16, 4 (April 1990), 403-414.

7. Jackson, M., System Devel opment. Prentice-Hall International, 1983.

8. Jahanian, F. and Mok. A.K. Modechart: A specification Language for Real-Time Systems. |EEE

Transactions on Software Engineering 12, 12 (December 1994), 933-947.

9. Ostroff, J.S. Forma Methods for the Specification and Design of Redl-Time Safety Criticd Systems.

The Journal of Systems and Software 18, 1(April 1992), 33-60.

10. Peterson, JL. Petri Net Theory and the Modeling of Systems Prentice-Hal Englewood Cliffs,

NJ, 1981.

11. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. Object-Oriented Modeling

and Design, Prentice-Hal, Englewood Cliffs, NJ, 1991.



18
12. Sanden, B. Entity-Life Modding and Structured Andyss in Red-Time Software

Design A Comparison, Communications of the ACM 32, 12 (December 1989), 1458-1466.



