
62 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 63

J
ust as engineering drawings express
the 3D structure of mechanical and
architectural designs, conceptual models
are the means by which complex software-
intensive systems, as well as systems in the
more general sense, are conceived,

architected, designed, and built. The resulting
models are analogues of the mechanical design
blueprint. The difference, however, is that while
blueprints are exact representations of physical
artifacts with a precise, agreed-upon syntax and
long tradition of serving as a means of commu-
nication among professionals, conceptual models
are just beginning to make headway toward
being a complete and unambiguous representa-
tion of a system under development. The articles
in this special section gently walk you through
the abstract world of systems analysis and
architecting by means of conceptual modeling
and how to evaluate and select models, along
with the methods used to construct them.

How to evaluate
and select the
methods and tools
for building
conceptual models
that faithfully
represent the
abstract concepts
of a software
system’s
architecture.

CONCEPTUAL

MODELING
AND SYSTEM
ARCHITECTING

B y D o v D o r i , G u e s t E d i t o r

illustration by Istvan Orotz

64 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

Systems exist in nature as well as in virtually any
conceivable area of human activity. We live within
and are surrounded by systems. They are the focus of
research and development in many fields of human
endeavor. In recent years, systems in general and soft-
ware-intensive systems in particular have grown
tremendously in both complexity and number of dis-
ciplines involved. These trends have started drawing
the attention of researchers and system architects to
the growing interdisciplinary domain of systems sci-
ence and engineering. This emerging “meta-disci-
pline” is founded on the observation that a number of
fundamental principles (such as hierarchy, modular-
ity, inheritance, and feedback), acting on a compact
set of entities (such as stateful objects and the
processes that transform them) are common to all sys-
tems, regardless of their domain, discipline, or source.
This observation has opened the door to the potential
emergence of a simple, powerful lingua franca for sys-
tems development.

Like biological systems, many contemporary artifi-
cial complex social and man-made systems have
evolved over years of human history without an
explicitly stated, predetermined, well-defined goal.
This is especially true for systems with an intensive
human component, namely organizations of various
kinds. Still, in retrospect, by examining a system’s
architecture, or its structure-behavior combination,
one can usually infer its function, that is, the goal or
purpose it serves. This “reverse engineering” process is
not required when system architects face the task of
architecting a new system.

A major early stage in any artificial system’s life cycle
is creating its architecture—devising a concept of
structure and operation that would best attain the sys-
tem’s goal, such that its stakeholder’s intent is satisfied.
A key success factor is disambiguating the what-how
entanglement, clearly separating the function of the
system from its behavior. The latter is tightly inter-
twined with the system’s structure; together they
account for the system’s architecture.

F
unction is a problem-oriented concept, speci-
fying what goal the system is expected to
achieve, while architecture is a solution-ori-
ented concept, specifying how the system’s
function is to be achieved by a specific archi-

tecture. The article by Soderborg et al. emphasizes the
what-how interplay and its representation in terms of
interconnected objects and processes. It defines the
whats and the hows in terms of problem and solution
spaces. The authors propose a framework for concep-
tual representation of systems based on the Object-
Process Methodology (OPM). This template-based

SYSTEM ARCHITECTING
IS A KNOWLEDGE-BASED

INTERACTION INVOLVING
STAKEHOLDERS AND

DEVELOPERS AIMING TO
ACHIEVE A SYSTEM’S

FUNCTION.

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 65

approach enables a rigorous what-how decomposition
that is both theoretically sound and practically applic-
able as a system-architecting guideline for software-
intensive systems, as well as for a variety of other types
of complex systems.

Complex systems are hardly ever architected by one
person. Rather, architecting is a knowledge-based activ-
ity that consumes ample human interaction among
stakeholders and developers at various levels. Due to
the diverse nature of system architecting processes and
their subsequent phases, no single monolithic standard
development methodology spanning the entire system
life cycle is always suitable for the task at hand. Various
methods that suit specific needs of certain types of orga-
nizations in certain types of development projects can
be used. Effectively combining these method compo-
nents helps construct a system life cycle support
methodology.

This mix-and-match approach is at the heart of the
article by Henderson-Sellers. Method engineering can
be applied to construct a full methodology from
method elements or fragments typically stored in a
repository, underpinned by a metamodel.

Regardless of whether the systems development
process follows a recognized “software process”
approach or is tailored through method engineering,
system architects and developers can turn to a collec-
tion of modeling tools. Systems and models are there-
fore intimately related. Modeling is a human activity
of generating models, or abstract artifacts representing
systems. Models show certain aspects of that reality,
including function, structure, and dynamics, as per-
ceived or envisioned by the human modeler or system
developer. Historically, some of the earliest models
were maps of some geographical region or scaled ver-
sions of buildings, ships, and other artifacts to be con-
structed. As science and technology progressed, model
types proliferated to include scientific models that
manipulate mathematical and chemical symbols.
Early engineering models included such artifacts as
mechanical drawings, electrical schemes, and micro-
processor layouts. Their common thread was and con-
tinues to be the fact that they represent designs of
physical systems.

Such models have evolved over centuries. Models
of concepts that are themselves informatical and
hence more abstract began to emerge only in the
1970s and 1980s with such conceptual modeling
schemes as Entity-Relationship Diagrams, Data Flow
Diagrams, and Petri Nets and were followed more
recently by Statecharts, concept graphs, class dia-
grams, use cases, Object-Process Diagrams, and
Object-Process Language paragraphs. Each diagram-
ming approach has an (implicit or explicit) underly-

ing ontology—a set of semantics-bearing elements
(building blocks and connectors) by which the
domain’s structure and behavior are expressed in the
model. One or more of these models is generated
such that it constitutes a representation of a system’s
architecture.

Ontology turns out to be a key factor not only in
devising sound conceptual modeling methods but
also in their validation and assessment. Indeed, the
article by Shanks et al. discusses how information sys-
tems and software engineers can apply ontological
considerations to validate the system’s conceptual
model with the focal stakeholders whose worlds they
seek to represent. Validating conceptual models is
critical to high-quality system development; without
such validation, defects in the model that propagate
to subsequent implementation activities can be
costly. Validating a conceptual model entails ascer-
taining that it is a faithful representation of the focal
domain, implying a guarantee that it is accurate,
complete, free of conflict, and consists of attributes
that are not redundant.

Assessing the methods or techniques that yield con-
ceptual models requires evaluation at a higher level
than just the quality of the resulting conceptual
model. Here, constructivist theories of knowledge
acquisition may prove useful. Finally, Gemino and
Wand address the evaluation of conceptual modeling
approaches used in information system analysis.
Grammatical and phenomenological approaches are
combined to assess the cognitive effect of models.
Viewing modeling as a knowledge-construction
process, the authors propose a framework for empiri-
cal comparisons of modeling techniques based on the
learning process.

While drawing from seemingly remote disciplines
like philosophy (the origin of ontology) and human
cognition (the origin of the constructivist theory),
these articles spell out the tangible adverse conse-
quences that improper system architecting and mod-
eling can cause. Software and information systems
developers are well served to pay more attention to
activities related to modeling and architecting the sys-
tems they implement, as the insights they gain are
likely to prove beneficial throughout their systems’ life
cycles.

Dov Dori (dori@ie.technion.ac.il, dori@mit.edu) is an associate
professor of information systems engineering at the Faculty of
Industrial Engineering and Management, Technion, Israel Institute of
Technology, Haifa, Israel, and a research affiliate at MIT
Cambridge, MA.

© 2003 ACM 0002-0782/03/1000 $5.00

c

