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Vector-Based Arc Segmentation in the Machine
Drawing Understanding System Environment

Dov Dori, Member, IEEE

Abstract—Arcs are important primitives in engineering draw-
ings. Along with bars, they play a major role in describing both the
geometry and the annotation of the object represented in the draw-
ing. Extracting these primitives during the lexical analysis phase is
a prerequisite to syntactic and semantic understanding of engineer-
ing drawings within the Machine Drawing Understanding System.
Bars are detected by the orthogonal zig-zag vectorization algorithm.
Some of the detected bars are linear approximations of arcs. As
such, they provide the basis for arc segmentation. An arc is detected
by finding a chain of bars and a triplet of points along the chain.
The arc center is first approximated as the center of mass of the
triangle formed by the intersection of the perpendicular bisectors of
the chords these points define. The location of the center is refined
by recursively finding more such triplets and converging to within
no more than a few pixels from the actual arc center after two or
three iterations. The high performance of the algorithm, demon-
strated on a set of real engineering drawings, is due to the fact that
it avoids both raster-to-vector and massive pixel-level operations, as
well as any space transformations.

Index Terms—Arc segmentation, engineering drawing under-
standing, technical documentation automation, sparse-pixel rec-
ognition, document analysis and recognition, vectorization,
raster-to-vector, Hough transform.

I. INTRODUCTION

A typical line drawing is made up of polygons, circular arcs
and other type of lines [1]. Engineering drawings, stored
as scanned binary images, are the inputs to the Machine Drawing
Understanding System (MDUS) [2] which is based, among other
things, on the syntax of dimensions, developed in [3]. The
primitive recognition phase of MDUS comprises four algo-
rithms: orthogonal zig-zag (OZZ) for bar detection, perpendicu-
lar bisector tracing (PBT) for arc segmentation, self-supervised
arrowhead recognition (SAR), and textbox location. This work
concentrates on the arc segmentation algorithm.

PBT gets as input bars resulting from the OZZ algorithm
[2], [4]. OZZ is a fiber-optic inspired vectorization algorithm
that is particularly suitable for extracting bars from scanned,
binarized engineering drawings. Since OZZ is the starting
point for arc segmentation in MDUS, we describe its main
principles briefly. Fig. 1 is an object-process diagram (OPD)
which employs the object process analysis (OPA) methodol-
ogy [5], [6]. It shows that OZZ is an aggregation of four lower-
level objects: the sparse screening procedure, the OZZ Proce-
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Fig. 1: Object-process diagram of the bar detection phase

dure, the merging procedure, and the corner correction proce-
dure. The sparse screening procedure is the instrument for the
execution of the process sparse screening, which is the first
lower-level process within the bar detection process. When a
black pixel is encountered, the process sparse screening starts
to count the number of pixels in the black run, until enough
white pixels are encountered. If the length of the run is large
enough, but below a predefined threshold, the process of or-
thogonal zig-zagging is invoked, otherwise, the process of
parallel probing is invoked. The underlying idea of the or-
thogonal zig-zagging process, which is the heart of the vectori-
zation, is inspired by a light beam conducted by an optic fiber:
a one-pixel-wide “ray” travels through a black pixel area, sus-
pected to be a bar, as if the elongated black area were a con-
ducting pipe. The ray trajectory is parallel to the drawing axes,
and its course zig-zags orthogonally, changing direction by 90°
each time a white area is encountered. Accumulated statistics
about the horizontal and vertical sets of black run-lengths,
gathered along the beam trajectory, provide data for deciding
about the presence of a bar, its endpoints and its width, and
enable skipping junctions. The merging procedure then per-
forms the bar merging procedure, in which it tries to merge
bars from both the slanted bar list and the parallel bar list, ob-
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tained from the OZZ Procedure. The resulting merged bar list
then undergoes a process of corner correction, which fills in
missing black pixels in corners. The final outcome is the object
bar list. MDUS uses the IGES standard [7] as the format of the
output files of each module. Arc segmentation, which is the
main theme of this work, is described in detail in the rest of the
paper. After it has been completed, bars, which are linear ap-
proximations of arcs, are excluded from the IGES file, while
the detected arcs are added to' the file.

II. ARC SEGMENTATION METHODS

Existing methods for arc segmentation can be divided into
two groups. The first group includes methods to detect circular
objects that are based on Hough transform, while the second
group is motivated by the need to recognize objects in a scene.
Algorithms in the first group attempt to locate circles in
(possibly noisy) images by a certain transformation. Algo-
rithms in the second group are primarily concerned with the
extraction of meaningful features from objects by estimating
their edge curvature. The features extracted from the object
contour can be used for object classification and recognition.
In this section we briefly survey several methods from each
group and discuss their suitability for the purpose of arc seg-
mentation in engineering drawings.

Hough transform (HT) [11], [12] is a conventional method
for object extraction from binary images. HT is normally used
for arc segmentation in cases of isolated points that potentially
lie on circles or circular arcs. A circle can be described by (1),
where (a, b) is the circle center and r is the radius.

(x-a}+@-b}’=r (1)

HT uses this equation to map each (x, y) image point into all
parameter points which lie on the surface of an inverted right
angled cone, whose apex is at (x, y, 0). The circle parameters a,
b, and r are identified by the intersection of many conic surfaces,
as shown at the top of Fig. 2. This is done by examining the
peaks in a 3D accumulator array. This 3D accumulator peak
detection is in general too costly to be applicable. To reduce the
dimensionality of the problem from 3 to 2, the Adaptive Hough
Transform (AHT) method [13] was developed. To locate the
circle center, AHT incorporates the constraint that the vectors,
which are normal to the circle boundary, must all intersect at the
circle center (a, b) [14]. Knowing the image point (x, y) and tan6
then leaves only a and b as parameters to be found (see bottom
of Fig. 2). Mapping (x, y, 6) into the 2D parameter space (a, b)
produces a straight line. The intersection of many of these lines
indicates the circle center in the image. The radius of the circle
can then be found by histogramming r = (x — a’+@y- b)? and
locating the largest peak in the r histogram. Although AHT con-
verts circle detection into 2D peak detection, it still requires
pixel-by-pixel image operations and demands a large memory
space to accumulate the frequency of each circle parameter. Lo-
cating peaks in accumulators is also a heavy task. To make HT
more applicable, other works, including [15], [16], and [17],
have attempted to present optimized variations. However, since
they are derived from the original HT, they also require consid-
erable time and space.
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Fig. 2. The coordinate and HT parameter spaces for a circle (top) and finding
the circle center by AHT (bottom)

Other arc segmentation methods, including [18], [19], [20],
and [21], belong to the curvature estimation group. Motivated
by object recognition, the aim of these algorithms is to extract
meaningful features from objects by estimating their edge cur-
vature. Whereas Hough-based methods can handle isolated
points, the common requirement of curvature estimation al-
gorithms is that the input be a digital curve, i.e., a one-pixel-
wide line. This requirement implies a heavy preprocessing
phase, such as edge detection (for gray-level images) or thin-
ning (for line drawings). Asada and Brady [18] propose the
curvature primal sketch to represent significant changes in
curvature along the bounding contour of a planar shape. They
define a set of primitive parametrized curvature discontinuities
and derive expressions for their convolution with the first and
second derivatives of a Gaussian. They interpret the significant
changes in curvature at various scales. The input is a bounding
contour of the object to be recognized, while the output may
be a semantic network or a filtered response graph. Rosin and
West [19] describe a method of segmenting curves in images
into a combination of circular arcs and straight lines. It is an
extension of a method proposed by Lowe [22], which analyzes
arbitrary curves and produces a high-level straight line de-
scription. In [22], each curve is segmented by splitting it at the
maximum deviation from the approximating straight line. The
extension in [19] finds the best fit of a combination of arcs and
straight lines to the data. The input to the algorithm is a digital
line, hence the image must be preprocessed by an edge detec-
tor to extract connected pixels or use boundary descriptions
from chain-coded binary images. O’Gorman [20], [21] pro-
poses to carry out feature extraction by estimating the curva-
ture along digital lines and determining the features from the
curvature plots. For the difference of slopes (DOS) approach,
curvature at a point is estimated as the angular difference be-
tween the slopes of two line segments fit to the data before and
after the point. After finding the curvature of each point in the
data, the curvature plot is usually smoothed to reduce noise.
The specialized difference of slopes method DOS" {21] pro-
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poses to use a nonzero, small positive gap between the two
segments that estimate the lines between which the angle is
measured. DOS™ has been shown to be effective for estimating
curvature in terms of signal detectability. In [20], two ap-
proaches for curvature estimation are compared: the DOS*
method and the Gaussian smoothing of the second derivative.
DOS* was shown to over perform Gaussian Smoothing for
small signal angle and high noise. Here, too, the input is as-
sumed to be a chain of data points.

The motivation of arc segmentation in MDUS is to explicitly
define where arcs exist in the drawing and determine their pa-
rameters, including angle (which may vary from several to
360°), radius, center, endpoints, and, last but not least, line
width. Line width is very important in higher-level drawing un-
derstanding, because geometry lines are required by drafting
standards (ISO and ANSI) to be twice as thick as annotation
lines. Hough- based methods may be effective in gray-level im-
ages, where circles are sought and noise may be present. On top
of their computational complexity, they are not suitable for de-
tecting arcs with small angles, because the peaks that arcs with
small angles produce are not high enough to distinguish them
from noise. Detected arcs require postprocessing to define their
endpoints, because Hough-based algorithms define only the arc
center and radius. Finally, the width of each detected arc has to
be somehow related to the width of the signal in the transform
domain. This does not seem to be a trivial problem, and it is
relevant only if the input to the Hough-based algorithm is not a
result of a contour extraction preprocessing—thinning or edge
detection—which causes all contours and lines to lose their
original width and become one-pixel wide. Curvature estimation
methods assume that the input is a digital line, implying that the
image must undergo some contour extraction preprocessing. Not
only does this prerequisite put a heavy computational burden on
a system, but it also causes line drawings to lose important in-
formation about their original line widths. Since curvature esti-
mation methods are initially driven by the need to extract fea-
tures that emerge from the combination of straight lines and cir-
cular arcs, they are not even concerned with the extraction of the
more basic arc parameters center and radius, which Hough-
based methods attempt to determine.

In summary, existing arc segmentation methods do not
provide adequate means for extracting arcs from engineering
drawings. First, none of the methods detects line width. Sec-
ond, their main focus is either on detecting circles or wide-
angle arcs form noisy images or extract features from curva-
ture estimation for object recognition. Rather than using one of
the existing methods, we take advantage of the knowledge
about the bars detected in the previous Bar Detection phase of
MDUS. Some of these bars, which are linear approximations
of arcs, provide the basis for an arc segmentation algorithm
that is both effective and efficient.

Before describing the details of the algorithm, let us consider
an example of arcs segmented by the algorithm. Fig. 3 shows on
the left hand side a 300 DPI scan of one orthogonal view taken
from an engineering drawing. The right hand side shows a mag-
nified portion of the drawing, in which the detected arcs are
drawn in thin dotted lines with the arc centers and edges denoted
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by little white circles to show the segmentation results. The re-
sults are complete and accurate in spite of the presence of many
bars crossing the arcs in various directions.
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Fig. 3. A drawing scanned at 300 DPI (left) and PBT arc segmentation results.

III. THE PERPENDICULAR BISECTOR TRACING
ARC SEGMENTATION ALGORITHM

The perpendicular bisector tracing (PBT) arc segmentation
algorithm starts with clustering bars that potentially approxi-
mate arcs into bar chains. The arc center is refined by recur-
sively finding triples of points along the arc and computing the
intersection of the corresponding perpendicular bisectors of
the chords these points define. The details of the algorithm
follow.

A. Clustering Candidate Bars

Using the extracted bar list resuiting from OZZ, we can
view the image as approximated by bars of known locations
and widths. Fig. 4 is another scan of an engineering drawing.
Bars extracted from this drawing are shown in Fig. 5. The left
hand side of Fig. 6 shows the portion of interest of Fig. 5,
which contains arcs. The right hand side is a magnification of
the same portion in Fig. 8, after OZZ has been applied to ex-
tract bars. This is the starting point for PBT.
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Fig. 4. A portion of the drawing “Horseshoe 1” scanned at 300 DPL.
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Fig. 5. Bars segmented from “Horseshoe 1” as a result of the OZZ algorithm.
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Fig. 6. Arcs before and after bar extraction by OZZ.
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Tracing a chain of consecutive bars gives a preliminary clue
for the potential existence of an arc and its two endpoints. PBT
therefore first examines the list of bars extracted by OZZ.
Minimal and maximal length thresholds can optionally be
applied during this examination to filter out bars that are un-
likely to be on an arc. These two thresholds are closely related
to the minimal and maximal radii that can be detected. If no
limit is put on the upper bound of the length of the bars which
can be candidates for chains, then we should be able to detect
arcs of any radius, provided at least two bars were detected
from the chain. This, in turn, depends on two things: the
magnitude of the arc angle and the width of the line used to
draw the angle. A wide angle ensures that it be approximated
by at least two bars, because OZZ does not allow that more
than 20% of the pixels traversed along the medial axis of any
bar be white. For the very same reason, an arc with a given
radius and angle, which is drawn in a thick line, is less likely
than an arc with the same radius and angle, but with a thinner
line, to be approximated by at least two bars. Hence, the wider
the angle and the thinner the line, the more likely it is that the
arc will be detected. As for the lower bound on the length of
candidate bars, it, too, can be ignored if we wish to detect arcs
of small radii. In any case, OZZ already filters out bars that are
shorter than a minimal bar length parameter. Filtering bars
through the upper and/or lower bound threshold indeed speeds
up the search for chains, but it should only be applied if we
can be certain that arcs above or below some radius cannot be
present in the type of drawings we are processing. Those bars
that have close endpoints and similar width are clustered into
bar-chains. Each bar-chain is a candidate for representing an
arc in the raster drawing. For each such chain, the two extreme
edges, belonging to the two extreme bars in the chain, are de-
fined as a pair of preliminary arc endpoints. Since OZZ pro-
vides linear approximations for arcs, each preliminary end-
point is just an estimation of the arc edge, used to start up the
arc segmentation process.

B. Finding the Arc Curvature Direction

If an arc of less than 360° exists, then following the arc can
be done uniquely either clockwise or counterclockwise. For
example, in Fig. 7, going from A to B along the bar-chain can
be done only clockwise. To determine this direction, let V; =
(Dy;, Dx;) and V;;; = (Dy;,, Dxiy) be two consecutive vectors
in the bar-chain, where Dy; and Dx; are the y and x components
of V,, respectively. Let o; and ¢, be the angles of inclination
of V; and V,,,, respectively. We then have:

tanc; = Dy/Dx; 2

3

tan@,; = Dy, /Dx;yy
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tan6, = tan(y; — 0;) = (tanag,, — tane,)/(1 — tana; tan,) (4)

Substituting (2) and (3) into (4), the angle 6; between V; and
V.. is obtained in (5).

6, = arctan[(Dy;y1 Dx; — Dy; Dx;1)/(Dy; Dx;s1 + Dyia Dyi)] (5)

CZ}
Clockwise®,
\

Fig. 7. Determination of the trace direction.

To determine the arc direction, we compute the partial sums
in (6), where 7 is the number of bars in the bar-chain.
k
a, =30, for k=1,...,n-1 (6)
i=1
As long as the absolute value of oy keeps growing along
with &, the curvature is consistent and the summation contin-
ues. Reduction in this absolute value implies that the curvature
direction has changed. When this occurs, a new endpoint is
taken for the bar-chain, while the remaining (n — k) bars in the
list form a new bar-chain. The trace direction is then deter-
mined by the sign of o.

C. Finding a Third Point on the Arc

Based on the Euclidean geometry theorem, which states that
three points on a plane uniquely determine a circle, we wish to
find three points to start the arc detection process. Two pre-
liminary arc endpoints are provided by the bar-chain edges.
Using these two points, the algorithm tries to locate a third
point along the presumed arc. The five steps of a naive version
of this process are shown and explained in Fig. 8. A perpen-
dicular bisector is constructed for the segment AB and tracing
is done along it. When the bisector encounters a run of black
pixels, the potential arc is assumed to be met. The point F re-
turned by this procedure lies midway between D, the arc entry
point, and E, the arc exit point.

1. A and B are the

two preliminary arc
endpoints. A

4. Continue until a white
pixel is met at E.

2. Construct a
perpendicular bisector at
C and trace in the c
predetermined direction. s

) s
rYPLd
o
(y
)

5. Return F, the
midpoint of DE, as
the point on arc.

3. Trace till a black ‘,
pixel is met at D. B

Fig. 8. Detecting the third point along the candidate arc.
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Fig. 9 shows the location of the third point originating from
the two initial, inexact arc endpoints A and B, and the two
exact arc endpoints, C and D. In spite of the difference be-
tween the correct trace direction and the one actually pursued
(due to the incorrect estimation of the preliminary endpoints A
and B rather than C and D), for arcs up to 180°, the traced
third arc point E is close to arc point F, found for the exact arc
endpoints C and D. To prove this, let us first assume that A
and C are close enough to be considered the same point, such
that the large distance is only between B and D. The resulting
distance between E and F for arcs up to 180° can be no more
than half the distance between B and D. To see why, consider
a 180° arc, such that AB is an approximate diameter, and CD
is a precise one. Let O be the middle of CD (the arc center).
Triangle DBC is about similar to triangle OEF and about twice
as big, because CD is the diameter and OF is the radius. There-
fore, EF = 0.5BD. For arcs less than 180°, the small triangle
OFF is smaller than half the big one, DBC, meaning that E is
closer to F more than 0.5BD. When we remove the assumption
that C and A are very close, but assume instead the more re-
laxed assumption that points A and B are on the same side of
chord CD, the situation improves, because the big triangle is
now bigger than before. Since the small triangle is about the
same size relative to the previous situation, the similarity ratio
between the two triangles is now larger, forcing the distance
between E and F to be smaller.

Fig. 9. The location of the third point (E and F) originating from inexact and
exact (AB and CD) arc endpoints, respectively.

D. Arc Endpoint Refinement for One-Bar Chains

A common situation in engineering drawings is demon-
strated in Fig. 10: For small, 90° arcs, in which the radius-to-
width ratio of the arc is not large enough, OZZ is likely to ex-
tract only one bar from the arc area. If the tangent bars are
long enough to exceed the length threshold for being candidate
members of an arc bar-chain, as in Fig. 10, the bar-chain
would consist of just one bar. This situation occurs either when
the arc has a low radius/width ratio, or if the preliminary arc
endpoints A and B in Fig. 10 are too remote from the actual
endpoints of the arc. In this case, the naive version of the al-
gorithm, which is based on chain determination, would fail to
detect the arc.

For this situation, we need an improved approximation of
the two preliminary arc endpoints. This is done in a procedure
based on the observation that OZZ detects straight bars more
accurately than bars that approximate arcs. Due to this, the
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endpoints C and D of the long bars tangent to the arc mark the
arc endpoints more accurately than A and B. Accordingly, C
and D replace A and B as the preliminary endpoint candidates.
Next, line CD is stretched in two directions beyond its two
endpoints C and D, till either a white-pixel area is found, or a
threshold is exceeded. Then, from the two new extreme points
E and F of the stretched line, black pixels are searched to both
directions perpendicular to line CD. As demonstrated in
Fig. 10, this search yields points G and H. The trace direction
is then the reverse of the direction of vector from E to G and it
yields the arc point L. The two other arc endpoints are M and
N—the middle points of EG and FH, respectively. If the radius
is even smaller, and especially if the line is relatively thick, it
may be the case that the arc is not approximated even by one
bar. Instead, the two bars, which are supposed to be perpen-
dicular, are shifted toward each other such that they form an
angle slightly larger than 90°. A situation like this can be de-
tected already when trying to perform the corner correction
procedure within the OZZ Algorithm by observing at least one
of the following two phenomena:

1) The angle between the two bars is somewhat larger than
90°, which is very uncommon in engineering drawings
(an angle is normally either 90° or else significantly dif-
ferent than 90°, e.g., 60° or 120°).

2) The square region where the two bars are expected to
meet each other does not contain enough black pixels, as
it should if the two lines form a real corner.

The current version of OZZ does not support this refinement.

3. Move from E and F
normal to B until
white pixels are

B encountered at G
and H.

G

A
1. AB is a single-bar-
chain passing through
black pixels. Pick C
and D as endpoints.

4. Do PBT trom | in
a direction
opposite to the
vectors 3 and B

2. Extend CD outward
till white pixels are
encontered at E and F.

Fig. 10. Finding three preliminary points for a 90° arc connected to two long
tangent bars.

1. A loop in
the bar-chain
indicates a
circle. Pick
any pair of
endpoints A A 4
and B of non-
consecutive
bars.

2.Use Fand F
for another
iteration of PBT
from C'to get A'
and B' as two
exact points on
the circle.

2. Do PBT from C
to both directions
to find F and F'

Fig. 11. Detection of points on a circle.

E. Circle Detection

A circle is detected if a loop is found while examining the
bar chain. Since a circle has no endpoints, we select any two
endpoints A and B, which belong, respectively, to any two
non-consecutive bars in the bar-chain (see Fig. 14). Starting
from C, the middle point of AB, PBT is carried out to both
directions perpendicular to AB. Since tracing to both direc-
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tions will encounter points on the circle, it is no longer neces-
sary to determine the trace direction first. The two points
found serve as two new arc points for a second application of
PBT, which is done in the same way as the detection of an
open arc, except that the trace direction is arbitrary.

F. Recursive Arc Center Location

Having found three preliminary arc points, a preliminary
center of the arc, O in Fig. 12, is computed as the intersection
of the two perpendicular bisectors of the segments AC and BC.
To verify that the bar chain indeed approximates an arc and to
refine the location of its center if it indeed exists, we use
(A, C) and (B, C) as two new endpoint pairs. Application of
PBT to each one of these two point pairs yields the two new
arc points D and E, respectively. The two point triples (A, C,
D) and (B, C, E) are used to compute two more arc center es-
timations, O; and O,, respectively. The distance differences
among Oy, Oy, and O, are checked and compared to a prede-
termined center dispersion threshold.

1. First PBT
finds C based A
on A and B and
@ as the arc
center.

2. Second PBT
finds D based
on A and C and
O as the arc
center.

e
=T

3. Third PBT
finds E based .
onBandCand 4 The arc center’
Q asthe arc g estimated as %, 4
center. the center of mass /¢
of the triangle B ©

Fig. 12. The first iteration of the recursive arc center computation.

If the center estimates of the potential arc are remote from
each other by more than the center dispersion threshold, the
conclusion is that the bar chain does not represent an arc, and
further checking of this chain is aborted. Otherwise, it is likely
that the chain is indeed a result of a linear approximation of an
arc. This is due to the fact that if A and B were wrong in the
first place, i.e., if they were not approximate arc endpoints, the
probability that Oy, (obtained from A, B and C), O, (obtained
from A, C, and D), and O, (obtained from B, C, and E), would
be close enough to each other by pure chance is very low.
Hence, if the dispersion threshold criterion is met, the center of
mass O, of the triangle formed by O,, O,, and O, is returned
as the first approximation of the detected arc center and the
first iteration of the recursion ends. If, however, the chain is
not a result of an arc, and Oy, O;, and O, just happen by
chance to be close to each other, the triangle mass center found
in this iteration and those found in subsequent iterations will
not converge as they should in case of a circular arc. For the
second iteration, since points D and E in Fig. 9 are likely to be
more precisely located on the arc than points A and B (which
are just bar-chain endpoints), the former pair is taken as the
new endpoints, and the process illustrated in Fig. 9 is per-
formed recursively. The halting condition is either the satis-
faction of an accuracy criterion for two consecutive detected
centers, or proximity of the two newly detected arc points. The
recursion depth depends on the radius/width ratio and on the
curvature of the arc.
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Normally, no more than two to three iterations are required
to obtain accuracy of the center location within few pixels. The
reason for this is that in the ideal case, any triple of points on a
circular arc should yield exactly the same center. As we have
proven in the section on finding the third point on the arc (see
Fig. 9), locating the third point is at least twice as accurate as
the location of the less accurate of the two approximated arc
endpoints. Hence, the center location accuracy in each itera-
tion improves on that in the preceding iteration by a factor of
at least 2. Thus, after three iterations we improve the accuracy
of the center location by a factor of at least 8. If the initial ap-
proximation of the arc center was, for example, 50 pixels away
from the actual one, the center location after three iterations
will be only 6 pixels or less away form the real center location.
In practice, if the original arc is accurate and not very thick,
the improvement rate is even quicker, because the factor 2
improvement per iteration is for 180° arcs, while most arcs are
less than that.

Arcs in engineering drawings are frequently accompanied
by annotation. In particular, they may end with one or two
arrowheads, as in the 45° dimension-set in Fig. 4, or interleave
with center (dash-dotted) lines, as in Fig. 3. Therefore, when
the PBT algorithm performs tracing to find a point on the arc,
it is not sufficient to simply take the first black pixel encoun-
tered. Rather, the pixels along the trace path may be black be-
fore the arc is actually starting to be crossed, or even right
from the beginning of the tracing, as shown in Fig. 13. Hence,
the non-naive version of PBT checks the width of the black
area traversed to find the entry and exit points of the arc. AB,
CD, EF, GH, IJ, and KL are short line segments within black-
pixel area perpendicular to the trace direction. Before the trace
enters the arc, there are at most little length differences among
the segments KL, 1J, and GH. After entering the arc, however,
there is an abrupt increase in the width measured perpendicular
to the trace direction (line EF in Fig. 13). The arc entry point
is the middie of EF. From this point on, the width starts to de-
crease, until it levels again at AB, whose middle is the arc exit
point. The third point in the triplet (in addition to M and N) is
in the middle between the entry and exit points, shown in
Fig. 13.

4. Arc exit point is
set when the width
stops decreasing —

>

Arc exit point

1. Start tracing
along OP, the
perpendicular
bisector to MN,

mesuring the width
of the black area
traversed.

2. Keep tracing as long
as the width (KL, IV, GH) O\ arc third point
styas about constant b
F Arc entry point
3. Abrupt width increase \,
(EF) indicates entry to N‘
arc. Arc entry point is
middle of EF.

5. Return Arc third
point — the middie
between arc entry
and exit points. .

Fig. 13. Finding the third point on arc when tracing is done within a black area.

G. Continuity Preservation

Since the arc detection starts with a pair of approximated
endpoints, the correct positions of the two endpoints of the
detected arc should be recalculated after its center and radius
have been obtained. Continuity is a very useful feature in engi-
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neering drawings, and it may be helpful in determining the arc
endpoints. As Fig. 17 demonstrates, each one of the four hori-
zontal bars connected to the edges of the two 180° arcs should
be tangent to the arc at the point where the bar meets the arc.
However, as we have learned from experience, when continu-
ity preservation is applied for the sake of arc endpoint deter-
mination without additional considerations, it can potentially
lead to results that are worse than those obtained without re-
quiring the preservation of continuity. The reasons for this are
that first, not every arc is continued by a bar which is tangent
to the arc, so enforcing continuity without applying additional
checks can lead to severe distortions. Second, even if continu-
ity should be preserved and has to be restored, a decision must
be made as to whether to fix the meeting point at the edge of
the bar or at the edge of the arc or somewhere in between.
When we applied continuity while stipulating that the arc edge
be the fixed point, the right edge of the bottom bar of Figs. 14
and 16 was raised relative to the left edge, because the de-
tected arc lower edge was higher than the detected bar right
edge. This caused the bottom bar to lose its parallelism to the
other three bars, making the overall result less accurate and
visibly less pleasing. On the other hand, deciding that the bar
edge be the fixed point is not always the right thing to do ei-
ther, because this may require to change the radius of the arc,
such that it may deviate from the arc in the original raster
drawing. This deviation, in turn, may potentially be corrected
by other operations such as a slight change in the location of
the arc center. In other drawings, the continuity preservation
requirement caused severe distortions of previously obtained
reasonable results.

These consequences imply, that to take advantage of conti-
nuity, such that its benefits outweigh potential distortions or
departures from the original drawing, a sophisticated decision
mechanism should be developed. This mechanism must con-
tain rules pertaining to such considerations as parallelism pres-
ervation and the extent of deviation of bar and arc endpoints
and orientations from the original raster file, below which it is
likely that continuity was meant to be present in the first place.
Fig. 17 shows the detected circles on which the arcs lie, drawn
at a width of one pixel on the original raster drawing. The
demonstrated detection accuracy of the arcs is high, even
though the preliminary endpoints were quite off, as can be
deduced from the corresponding bar-chains shown in Fig. 8.
Note, however, that the two arc centers C; and C, do not quite
coincide as they should. The decision as to whether or not
make these two arcs be concentric is another example for high-
level corrections, similar to those suggested by continuity
preservation, that can be made only after taking into account a
host of geometric, contextual and semantic considerations.

H. The Effect of Small Holes and Islands on Arc Detection

The input for PBT is the list of bars obtained from OZZ.
OZZ has a “white noise” parameter, which denotes a certain,
small number of white pixels that must be counted by OZZ
when traversing through a black pixel area before it concludes
that the edge of the line has been encountered. Using this pa-
rameter, even if the line has small holes, or even breaks that
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cause discontinuities, it is still detected as one long bar, pro-
vided that the original width of the line does not change sig-
nificantly. This improves the detection accuracy of bars in
general and of those that approximate arcs in particular. The
same parameter is used by PBT to prevent it from prematurely
concluding that the arc exit point has been reached or from
prematurely aborting the search for the arc entry point. A
similar “black noise” parameter is used by PBT when travers-
ing a white area to find a third point on the arc, as explained in
Fig. 13. It functions to prevent noise that looks like small is-
lands of black pixels, caused due to crossing lines, dust in the
scanning, small ink stains, etc., from misleading the search for
the arc entry point.

I. Merging Multiple Arcs

Two concentric arcs are quite common, as Fig. 14 shows. A
necessary condition for concentric arcs to be identical is that
their radii and endpoints are close enough. As is the case with
bars in OZZ, a single arc in a drawing may sometimes be de-
tected more than once, due to some particular bar segmenta-
tion by OZZ, which results in more than one bar chain for the
same arc. A case of this nature is shown in Fig. 15, where two
arcs with different radii and centers—ADB and CDE—are
detected for the same actual arc. The reason for getting more
than one bar chain is explained in the next section. Every pair
of detected arcs is checked for possible overlapping. This is
done by comparing the values of the arc parameters—center,
radius, and the two endpoints of each arc—to the correspond-
ing values of the other arc. Merging two such arcs is done in
three situations. The first situation occurs when the centers,
radii and the two endpoints of each arc is close enough
(relative to a proximity parameter) to the corresponding points
of the other arc. In this case, the merged arc center, radius and
endpoints are simply the averages of the corresponding points
of the two detected arcs. The second situation is when three
selected points of one arc, two of which are the arc endpoints,
are located within a proximity parameter from the medial axis
of the other arc. In this case, the smaller arc is considered to be
contained within the larger one, and is discarded. This is the
case described at the top part of Fig. 15. The third situation
occurs when two arcs partially overlap. This can be detected
by noting that two arcs have similar radii and centers, while
each arc has exactly one endpoint that lies close enough to the
other arc. In this case, the extreme arc endpoint of each one of
the two arcs, which lies outside the other arc, serves as the bar-
chain endpoint and is input to a new application of PBT.

Ve \
[
T j

Fig. 14. The two 180° almost concentric geometry arcs detected in
“Horseshoe 1.”
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The proximity parameter, used to determine whether a point
on one arc is “close enough” to the other arc should not be too
large, as this may cause two concentric circles or arcs, such as
the ones denoting threading, to be erroneously merged. The
arcs may also be concentric and with the same radius, but still
non-overlapping. This is possible in the case of a dashed arc or
a dashed circle. When such an arrangement is found, it may
serve as a starting point for detection of dashed arc or circle.
Appendices A through D provide an annotated C code of the
main routines of the PBT algorithm.

IV. ARTIFICIAL LINE DRAWING TESTS

To further evaluate the performance of the PBT algorithm,
we examine artificial line drawings. One such drawing is de-
picted at the top of Fig. 15, where two arcs were detected,
where in fact only one arc is present.

A

Fig. 15. An arc which is detected as two arcs (top) and the two bar chains
which are the reason for this multiple arc detection (bottom).

As the bottom part of Fig. 15 shows, a situation like this can
occur when OZZ approximates the same arc by overlapping
bars, which lie in such an arrangement that when they are
combined into bar chains, two bar chains result. One chain is
made of the four bars AB, BC, CD, and DE, and the other-of
the two bars FG and GH. Even though OZZ has a bar merging
routine, it did not merge the overlapping bars, because the
merging condition for two partially overlapping bars, such as
AB and FG, is that at least one endpoint of each bar be within
the rectangular area of the other bar. Hence, while endpoint B
of bar AB, for example, lies within the area of bar FG, end-
point F of FG does not lie within the area of bar AB, so the bar
merging condition is not met. The bars FG and GH cannot be
part of the chain which starts with bar AB either, because the
distances from F, G and H to any one of the points A, B, C, D,
E, or F exceed the chain-endpoint distance threshold. Thus,
two bar chains are formed from the same actual arc, leading to
two detected arcs. These two arcs are merged in the arc merg-
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ing routine, resulting the elimination of the smaller arc CDE.

Another artificial line drawing appears on the left hand side
of Fig. 16. It is a square with four rounded, equal radii arcs of
90° each. All four arcs in this drawing were successfully seg-
mented by PBT, as can be seen on the right hand side of
Fig. 16. The edges and centers of the arcs are marked with
circles and crosses. The interesting thing to note here is that
even though the original radii are the same and the arcs were
detected with the correct 90° angle, each pair of arcs on the
diagonal of the square was found to have a slightly different
radius. The reason for this is that the lines of the rounded rec-
tangle are relatively thick, making the linear approximation
obtained by OZZ different for each pair of arcs due to the
sparse screening progression of OZZ from left to right and
from top to bottom. This, in turn, results in a different location
of the centers found by PBT for each pair of arcs.

>(:j X T
N

Fig. 16. A square with rounded corners of equal radii and the resulting de-
tected arcs.

Fig. 17a is an artificial drawing containing eight pairs of
arcs with different radii, orientations and line widths that are
touching and curved in opposite directions. Fig. 17b shows the
PBT results obtained without tuning any one of the algorithm
parameters. Most of the arcs were detected, although some
have a discontinuity around the location where they are sup-
posed to meet. The reason for the discontinuity is that around
the point of inclination, where the curvature direction is in-
verted, OZZ detected a relatively long bar, which exceeded the
upper bound on the length of the bars that are candidates for
arc chains. Other arcs, especially those with thick lines, were
not completely discovered either. Here, OZZ failed to recover
some bars because they exceeded the maximal line width pa-
rameter. It should be noted that a situation like this is very rare
in real engineering drawings, because this feature is not useful
and hard to manufacture. Thus, although the algorithm was not
designed to handle such interactions among arcs, it still man-
aged to segment most of the arcs arranged in this way.

AVIEA

; N
SN
/\/ ) 2 L/
v — TN

Fig. 17. Touching inverted arcs (a) and the result of the arc detection (b).
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V. COMPLEXITY CONSIDERATIONS

The complexity of forming all candidate bar chains is O(n?),
where n is the number of bars extracted by OZZ. Since n is
much smaller than the number of pixels in the drawing, this is
a reasonable complexity. Having found the bar chains, finding
the arcs adds only a constant amount of time, because, as ar-
gued, the number of iterations in the recursive procedure that
finds the arc center never exceeds four in practice. From a
memory point of view, the algorithm has very modest require-
ments. It only needs to store a few intermediate traced points
for computations. Since the algorithm is not related to any
variant of the Hough transform, or any other transformation
that requires massive pixel operations, it is efficient, as it has
to examine only a small portion of the drawing pixel popula-
tion. For example, the drawing “Horseshoe 1” in Fig. 3, whose
size is about 1.35MB (1,500 x 900 pixels), required about
6 seconds to extract the arcs running on a DECSYSTEM 5400
RISC machine. This time includes the generation of bar
chains, the determination for each bar chain of whether or not
it approximates an arc, conversion of the appropriate bar
chains into arcs, and updating the IGES file, such that the de-
tected arcs are added and the bars that approximated those arcs
are removed. Since the input is the IGES file, which already
contains bars, there is no preprocessing involved. PBT does
not operate directly on the entire bitmap, which, for real appli-
cations, may be in the order of 10® pixels. As noted, the com-
plexity of forming all bar chains is O(n%), where n is the num-
ber of bars extracted by OZZ. As the size of the drawing
grows, one may expect the number of bars extracted by OZZ
to grow as well. However, the number of bars is not strictly
directly proportional to the drawing size, because as the
drawing area grows, there are more contiguous white areas
between the orthogonal views.

The algorithm can be made more efficient by simple im-
provements, such as the application of more stringent upper
and lower bar length thresholds to exclude unlikely bars from
being members in arc chains. However, each such improve-
ment must be carefully tested on a large sample of drawings to
ensure that the increase in the algorithm efficiency (speed of
execution) does not hamper its effectiveness (arc segmentation
rate and accuracy). For large drawings, the O(n?) complexity
can be reduced significantly by dividing the drawing area into
squares, the size of which may be chosen contextually to op-
timize the computational load. On the average, the side of each
such square will be something like 2.2D, where D is the ex-
pected diameter of the circle on which an arc with the maximal
radius lies. There will be a 10% horizontal or vertical overlap
between any two adjacent squares to prevent missing an arc
which is exactly on the border. Each bar will be assigned into
one of these squares if its two edges are within the square. If
each edge of the bar is in a different square, then the bar will
be listed in both squares. The complexity of assigning bars into
squares is O(n). The search for bar chains will now be re-
stricted to bars that are listed in the same square. Assuming a
homogeneous distribution of bars across squares and a ratio of
1:10 between 2D and the side of a large drawing, the number
of squares is a drawing will be 100, so the average number of
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bars in each square will be 0.01#n, and the complexity will be
reduced by a factor of 10,000 within each square and by 100
for the entire drawing. This surprisingly high speedup is ob-
tained due to the fact that no time is wasted in checking
whether any two bars, that are too far away from each other,
may potentially generate a chain. This speedup factor of 100
assumes that the bars are evenly distributed throughout the
drawing plane, which, as noted, is usually not the case. Assum-
ing that all the n bars have a uniform distribution over just a
quarter of the drawing plane (i.e., 25 of the 100 squares), the
speedup factor will still be (0.04) — 2/25 = 25. There is, how-
ever, an O(n) overhead in classifying the bars into the squares
and in checking for multiply detected arcs, but it seems that for
a ratio of at least 1:4 between 2D and the side of the drawing,
this method should yield considerable speedup.

VI. EXPERIMENTAL RESULTS

Limited by scanner size and memory limitations, we have
tested about 25 real engineering drawings, or portions of
drawings, of size A4. This section presents graphically arcs
segmented from a sample of these engineering drawings.
Fig. 18 shows a drawing “Horseshoe 2” and a magnified por-
tion of the two 1800 arcs, as detected by the PBT algorithm.
The larger arc is slightly larger than the one detected, causing
its center to be shifted to the right. An improved version of
PBT should remedy this by a post-processing step that checks
whether the arc passes entirely through a black area of ap-
proximately constant width. If not, the post-processing might
try to improve the result by slightly changing the radius and/or
the center.

b ane g

Fig. 18. “Horseshoe 2 (left) and a magnified portion showing the detected
arcs with their centers and endpoints.

Fig. 19 shows the drawing “Horseshoe 1” and a magnified
portion of the 45° dimension-set arc, accurately detected by
the algorithm. Note that the presence of the two arrowheads at
the arc edges did not have any adverse effect on the arc seg-
mentation accuracy. In the drawing “Base-side view” (Fig. 20),
an arc and a circle were correctly detected.

As can be seen, the arc is correctly defined to be somewhat
larger than 90° due to the fact that the tangent bars are oriented
with respect to each other in an angle which is less than 90°.
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Fig. 19. “Horseshoe 1" (right) and a magnified portion showing the detected
arc with its center endpoints.
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Fig. 20. “Base-side view” (left) and a magnified portion showing the two
detected arcs with their centers and endpoints.

VII. DISCUSSION AND CONCLUSION

An algorithm for segmenting arcs from mechanical engi-
neering drawings—perpendicular bisector tracing (PBT)—has
been presented and demonstrated. Suited to the environment of
the Machine Drawing Understanding System, it is capable of
detecting arcs that are interleaved with other graphic objects,
such as center (dash-dotted) lines and arrowheads. In addition
to the arc endpoints and center, the algorithm finds the arc
width—an important parameter for higher level understanding
of engineering drawings. The complexity of the algorithm is
not directly related to the size of the input image. It is only
affected by the number of arcs, their width and curvature, and
the number of bars detected by the previous bar extraction
step. The ultimate goal of the Machine Drawing Understand-
ing System is to obtain a level of engineering drawing under-
standing that approaches that of trained humans. This poses
stringent demands on detection accuracy and efficiency of
primitives in general and arcs in particular. The performance
of PBT in terms of accuracy and efficiency and the way it is
integrated within the MDUS system makes it a suitable algo-
rithm for this purpose.
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APPENDIX A

Procedure 1: Find trace direction )
determine_trace_direction (current_bar_chain, trace_direction)
{ /* decide trace_direction by tracing input bar chain */
current_vector = get_next_vector (current_bar_chain);
/* get first bar */

a = 0; /* inital value of sum of g */
while (a > 0) or (! is_empty (current_bar_chain))
{

(DXy , DYy) <- current_vector;
next_vector = get_next_vector (current_bar_chain);
: /* get next bar */

(DX; , DYi1) <- next_vector; ’
q = arctan2(DY;DX; - DYoDX; , DX¢DX; + DY:iDYy);
if (q > 95) break;

/* if angle change is too drastic, no more bars on arc */
if ((g@ * a) < Q) break;

/* if the curvature is in the wrong direction, */
/* no more bars on arc. */

a=a+4dg; /* sum up q’'s */
current_vector = next_vector;

}
/* summing up all change of angles */

if (a > 0) : /* arc goes clockwise */
trace_direction = counter_clockwise; :
else if (a < 0) /* arc goes counter_clockwise */

trace_direction = clockwise;
}

APPENDIX B

Procedure 2: Perpendicular Bisector Tracing (PBT)
PBT_trace (starting _point, trace_direction, detected_arc_point)
{ /* trace following input trace direction to find an arc point */
trace_direction = trace_direction / magnitude;

) /* get unit vector */
search_step = 0; /* search has not started */
while (! check_on_arc (current_search_point))

and (search_step < limit)

{ '

current_search_point = search_step *
trace_direction + starting_point;

search_step ++; /*search one more step */

} /* keep tracing until edge of arc is hit */
starting_arc_point = current_search_point;

search_step = 0 /* reset search step */

do /* trace the width of arc */

{
search_step ++;
ending_arc_point = search_step*trace_direction +

starting_arc_point; :
. } .
while (check_on_arc(ending_arc_point))
and (search_step < limit);

search_step ~-- ; /* retreat one step */
ending_arc_point = search_step*trace_direction + starting_arc_point;

detected_arc_point = middle_point (starting_arc_point, ending_arc_point) ;

APPENDIX C

Procedure 3: arc endpoint refinement

end_point_refinement (end_point_C, end_point_D, trace_direction)

{/* input end points need to be further approximated to decide tracing direction */
/* get stretch direction */
left_stretch_direction = (end_point_C - end_point_D) /magnitude;
right_stretch_direction = - left_stretch_direction;
left_anchor_pointl = trace_black_pixel (end_point_D, right_stretch_direction);
right_anchor_pointl = trace_black_pixel (end_point_D, right_stretch _direction);
/* trace direction at left end of arc */

left_trace_direction = choose_trace_direction (left_anchor_pointl, left_stretch_direction);

/* trace direction at right end of arc */
right_trace_direction = - '
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choose_trace_direction
(right_anchor_pointl, right_stretch_direction);

if (left_trace_direction == right_trace_direction)
/* if identical directions */
trace_direction = - left_trace_direction;

else fail_in_detecting; )
/* PBT cannot have two different trace directions */
left_anchor_point2 = .
trace_black_pixel (left_anchor_pointl, left_trace_direction);

right_anchor_point2 = trace_black_pixel

{(right_anchor_pointl, right_trace_direction);
end_point_C =

middle_point (left_anchor_pointl, left_anchor_point2};
end_point_D =

middle_point (right_anchor_pointl, right_anchor_point2);
} .

APPENDIX D

Procedure 4: recursive arc center computation
detect_arc_center (left_end _point, right_end point, arc_center)
/* left_end_point and right_end_point are two input arc end points */
{
start_trace_point = middle_point (left_end_point, right_end_point);
/* PBT trace for arc point */
PBT_trace (start_trace_point, tracing_direction, middle_arc_point);
- if on_straight_line (left_end _point, right_end point, middle_arc_point)
return 0;
/* if three points are on the same line, no arc is found */
/* first estimation of center */
temp_center_1 =
compute_center (left_end point, right_end_point, ' middle_arc_point);
start_trace_point = :
middle_point (left_end point, middle_arc_point);
PBT_trace (start_trace_point, tracing_direction, left_arc_point);
if on_straight_line (left_end_point, middle_arc_point, left_arc_point)
return 0;
/* second estimation of center */
temp-Center_2 =
compute_center (left_end_point, middle_arc_point, left_arc_point);
start_trace_point =
middle_point (right_end_point, middle_arc_point);
PBT_trace (start_trace_point, tracing_direction, right_arc_point);
if on_straight_line (right_end_point, middle_arc_point, right_arc_point)
return 0;
/* third estimation of center */
temp_center_3 = :
compute_center (right_end_point, middle_arc_point, right_arc_point);
diff = compute_difference (temp_center_ 1, temp_center_2, temp_center_3);
if (giff <= LOWER_DIS_THRESHOLD) /* if accurate enough */
{
arc_center = average (temp_center_1l, temp_center_2, temp_center_3);
return 1; /* center is found */

}
else if (diff >= UPPER_DIS_THRESHOLD)
return 0;
else
if detect_arc_center (left_arc_point, right_arc_point, arc_center)
/* if arc center is detected by deeper recursive detection */
return 1; /* £ind center */
else return 0; /* fail */

/* if too far away */
/* fail */

}
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