
Developing Complex Systems with Object-Process
Methodology Using OPCAT

Dov Dori, Iris Reinhartz-Berger, and Arnon Sturm

Technion, Israel Institute of Technology
Technion City, Haifa 32000, Israel

Emails: {dori@ie, ieiris@tx, sturm@tx}.technion.ac.il

Abstract. OPCAT—Object-Process CASE Tool—is an integrated systems
engineering environment. It supports system lifecycle evolution using Object-
Process Methodology (OPM). OPM integrates the object-oriented (structure)
and process-oriented (behavior) paradigms into a single frame of reference
through a combination of graphics and equivalent natural language. This short
paper briefly describes OPM and demonstrates highlights of OPCAT and some
of its capabilities.

1 The Basis: Object-Process Methodology

Object-Process Methodology (OPM) [1] is a holistic approach to the study and
development of systems. It integrates the object-oriented and process-oriented
paradigms into a single frame of reference. Structure and behavior, the two major
aspects that each system exhibits, co-exist in the same OPM view without
highlighting one at the expense of suppressing the other. The elements of the OPM
ontology are entities (stateful objects and processes) and links. Objects are (physical
or informatical) things that exist, while processes are things that transform objects.
Links can be structural or procedural. Structural links express static relations between
pairs of entities. Procedural links connect entities to describe the behavior of a system.
The behavior is manifested in three major ways: processes can transform objects,
objects can enable processes, and objects can trigger events that invoke processes.
Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by
which entities can be linked. The Object-Process Language (OPL), defined by a
grammar, is the textual counterpart modality of the graphical OPD-set. OPL is a dual-
purpose language, oriented towards humans as well as machines. Catering to human
needs, OPL is designed as a constrained subset of English, which serves domain
experts and system architects engaged in analyzing and designing a system. Every
OPD construct is expressed by a semantically equivalent OPL sentence or phrase.
Designed also for machine interpretation, OPL provides a solid basis for
automatically generating the designed application. This dual representation of OPM
increases the processing capability of humans. Another advantage of OPM is its
complexity management mechanisms. OPM offers three refinement/abstraction

 Dov Dori, Iris Reinhartz-Berger, and Arnon Sturm

mechanisms: (1) unfolding/folding is used for refining/abstracting the structural
hierarchy of a thing; (2) in-zooming/out-zooming exposes/hides the inner details of a
thing within its frame; and (3) state expressing/suppressing exposes/hides the states of
an object. Using flexible combinations of these mechanisms, OPM enables specifying
a system to any desired level of detail without losing legibility and comprehension of
the resulting specification. The complete OPM system specification is a set of OPDs
and their corresponding OPL paragraphs.

2 OPCAT Overview

Based on human cognition principles, OPCAT [2, 3] implements OPM and enables
bimodal visual-lingual balanced modeling of the structural and behavioral aspects of
systems in a single view. Due to this intuitive dual notation, the resulting model is
comprehensible to both domain experts and system architects engaged in the
development process. Due to OPM formality, OPCAT also provides a solid basis for
implementation generation and an advanced simulation tool, which animates system
behavior. OPCAT enables generic translation of the OPL (subset of English) script to
various formal target languages. Currently we generate Java code from OPL.

Figure 1. A snapshot of OPCAT simulating an inventory system

Figure 1 is a snapshot of OPCAT simulating an inventory system. The OPD shows in
dark green objects that already exist (e.g., Customer, Product), while light green,
becoming dark, (e.g., Order) represents objects being generated. Dark blue is the

process currently in action (Product Ordering), while light blue (Product Handling)
is the higher-level process of which the current process is subprocess. The red dots
indicate the progress of the control. For example, the red dot along the arrow (result
link) from Product Ordering to Order indicates that Product Ordering is about half
done so Order is about half ready.

Figure 2. The process Order Paying and Supplying in-zoomed

Figure 2 shows the process Order Paying and Supplying of Figure 1 in-zoomed,
exposing its two subprocesses, Order Paying and Order Supplying. Currently, Order
Paying is being executed and it changes the Status attribute of Order from ordered
to paid.
Other prominent OPCAT features beside code generation include the generation of
UML diagrams from the OPM specification as well as automated documentation
generation in various parameter-governed formats. Projects under way include
collaborative capability, automated diagram layout, Visual Semantic Web, and
reverse engineering.

References
1 Dori, D. Object-Process Methodology - A Holistic Systems Paradigm, Springer

Verlag, Berlin, Heidelberg, New York, 2002.
2 Dori, D. Reinhartz-Berger, I. and Sturm A. OPCAT – A Bimodal Case Tool for

Object-Process Based System Development. 5th International Conference on
Enterprise Information Systems (ICEIS 2003), pp. 286-291, 2003.

3 OPCAT download site: http://www.ObjectProcess.org

