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Abstract: The paper considers a choice problem among alternative space aliocations. The choice is often
made intuitively because of the difficulty in simultanecusly considering multiple criteria (i.e., space
categories), some of which are of conflicting nature. The paper employs the methodology of multi-
attribute value functions to score and rank seven suggested area assignments. Through explicit considera-
tion of trade-offs among the four space categories, the methodology yields a rank ordering which is
consistent with the decision maker’s preferences. In addition to ranking the alternatives, the formal
analysis provided important insight into the trade-off and value structure over the space atiributes to
facilitate a new area assignment which was superior to the ones originally proposed.

» [Industrial enginsers and managers are often faced with a
problem of choosing among several alternative area assign-
ments. Planning is performed by the industrial engineers,
and the final choice usually rests with some level of manage-
ment. The final decision is often based upon the engineer’s
recommendations, and is frequently made on an. intuitive
basis. partially because of lack of a formal framework to
systemétically and consistently evaluate these factors or the
trade-offs among them.

This paper considers an actual problem of choosing
among several area assignments for a metal cutting ware-
house. It presents a framework that enables a systematic
comparison of the aliernative assignments, yielding a choice
that is consistent with the decision maker’s preferences and
values. In our specific application, the formal analysis not
only rank ordered the various alternatives but also provided
enough insight into the various attributes and trade-offs to
facilitate a new area assignment that was superior to the
ones originally designed by the industrial engineers. The
paper focuses on space assignment and not on the actual
layout, although alternative area assignmenis were presented

in layout form.
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The presented methodology of multiattributed value
functions is general and can be applied to any setting where
muitiattributed alternatives are to be ranked and evaluated.

The Problem Area

The firm considered in this paper consists of three sections:
(1) workshop, (2) metal cutting, and (3) assembly. Figure 1
presents a schematic representation of the organizational

structure. The metal cutting section consists of advanced
metal cutting machinery where the actual cutting is per-
formed by specific tools that are hooked onto the machines.
The tools department consists of a warehouse and a plant
(tool preparation) responsible for maintaining the tools in
satisfactory working conditions. The maintenance section of
tool preparation draws its tools from the metal cutting
warehouse whose layout is the focus of this paper. The
arrows in Fig. 1 indicate the possible flow of tools between
various departments.

The warehouse is a- 10-m X 12-m rectangle with a large
opening in the south side (suitable for passage of forklifts)
and a smailer opening on the northern side. The area assign-
ment for the warehouse is an allocation problem involving
the following four competing activities
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Fig. 2. Assignment # 1.

 Fig. 1. Organizational structure of the firm.

There .are certain minimal requirements of each of the
spaces. Space used for storage can be defined by the “net || I
space” which is the actual storage space and by the “gross [
space” which includes the actual storage area and area to — | g : ¥
gnable man or forklift access. Table 1 presents the net and R —
gross space information for each space category as well as i—‘ . I 0 Y s S |
the minimal requirements.

Fig. 3. Assignment #2.

Tahle 1: Minimal space requirements.

Space category Net area Gross area  Minimal Minimal

per unit per unit number area

m?) {m?} of units {m?)

A. Heavy parts 1 6 2 12
B. Superslot .5 1 25 25 ' l )
C. Vidmar 5 1 18 18 i ¢ | | | ! I ! I
D. Office 17 — —_ 17 — n
' A

As can be seen from Table 1, an area of 72m? (12 +25+ |
18 + 17) is determined by the minimal requirements. The
remaining area of 48 m* (120-72) has to be allocated . -
among the various categories in a “mast” beneficial way. ‘ I
Obviously, the more we have of each space category, the el T T 1
better. However, we are limited to 48 m?, and an increase in
the altotment to one type of space has to be offset by a 1
decrease in other allotments, - ' i__
Based on the information of Table I, the industrial
engineers prépared seven alternative area assignments. Four
of these plans are presented in Figs. 2 through 5.

Fig. 4. Assignment # 5,
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Fig. 5. Assignment # 7,

The seven alternatives differ in how the remaining 48 m?
were allocated. For example, Alternative 7 has more shelf
space (B) than Alternative 1, but has less cabinet storage (C).
Assuming dominated alternatives are eliminated, how do we
rank the remaining alternatives, taking into account all four
space categories? We nedd tools to handle the multiplicity of
evaluators in a systematic manner. The following section
will present the methodology and framework needed to rank
the alternatives. Again, we are focusing just on space assign-
ment, not design. Thus it is possible to have two identical
area assignments presented in different layouts (i.e., arrange-
ments) where one might be preferred over the other. The
two areas, however, will have an identical ranking as far as

area assignrent,

Theoretical Background

The discussion in this section draws heavily on the theory
of multiattribute value functions {2].

Let X, ..., X, be n evaluators, and assume that each
X; is a monotonically increasing evaluator. Letting each X;
take on a value x;, we obtain vectors of the form
x ={(x;,...,X,) in a certain evaluation space where we
want to observe preferences. We assume: (1) for any
two points x’ andx" in the evaluation space, either x' > x”"
(to be read: x' is preferred or indifferent to x") or
x">x'; if both conditions hold, then we say that
x" ~ x" (to be read: x" is indifferent to x"); and if [not
x" 2 x"] holds, we say that x" > x' (x"" strictly preferred to
x"); and (2) that the preference “=" is transitive.

We shall look at points x = (y, z) where y represents
those components of x on a previously specified subset of
the indices {1,...,n}, and z represents x on the comple-

mentary set of indices. Without loss of generality we can.

always permute the indices so that y =(x,..., x,) and
2= (Xg4q, ..., X,). We can view the typical point in the
evaluation space as a twotuple (v, z). Naturally, we can also
extend this convention to partition the evaluators into two
sets Y={X1,..., X, }andZ= {X,,y,..., X, }.

DEFINITION. y' is conditionally preferred or indifferent to
»" given z*if and only if (', 2¥) > (3", z*). We can there-

. fore describe the conditional preference structure among

evaluators Y, given that complementary evaluators are held
fixed at z*. '

DEFINITION, The set of attributes ¥ is preferentigily
independent of the complementary set Z if and only if the
conditional preference structure in the y space, given z*, does
not depend on z* More symbolically, ¥ is preferentially
independent of Z if and only if [y', z%) > (¥, z%)] implies
[(,2) = (", 2)] forallz, y", " In such a case, the decision
maker can structure a value function Vy defined on the
¥’s without specifying a particular z*,

DEFINITION. The evaluators X, ..., X, are mutugily
preferentially independent if every subset ¥ of these cvalua-
tors is preferentially independent of the complementary set
of evaluators.

THEOREM. If every pair of evaluators is preferentially inde-
pendent of ifs complementary set, then all the evaluators
are mutually preferentigily independent,

The proof of the preceding theorem appears in Keeney and
Raiffa [2].

The following theorem is the most important one for our
specific application, in conjunction with the theorem stated
above. Its proof can be found in the literature [1].

THEOREM. Let X, . .., X,, be n evaluators, n >3, Ifix, x;)
are preferentiglly independent of the other n - 2 evalyators
Jor all i and j, then there exist value Junctions V; such thai
V(xl,. ., x,,)= Z;l V,-(x,-) .

We are faced with the task of assessing a four-attribute
value function V(A, B, C, D). The ideal situation, for assess-
ment purposes, is to have a completely additive functional
form. If we want to make use of the above theorem, we have
to verify that every pair” of attributes is preferentialty
independent of the other two. After carefully evaluating the
various combinations, the decision maker reached the con-
clusion that his preferences over pairs of attributes were
independent of the specific levels of the other two attributes.
This was verified by considering preferences over all six
possible combinations of pairs of attributes wile holding
the complementary two attributes at fixed fevels., These
fixed levels were also varied to assure that preferences did
not depend on aspecific level of any of the complementary
attributes. Hence, by the above theorem, an additive value
function was justified. In cases involving a very large number
of attributes, verifying that every pair of attributes is indeed
preferentially independent of the complementary set may
become a very tedious task. If we do have complete additiv-
ity, the multiattribute value function can be represented as

[2]:
Vi, ..., x,) = 0 AV where A, >0 for all

z (N =1 The X,’s can be viewed as scaling factors, or
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coefficients determining the substitution rate among attri-

. butes. The assessment of the four-attribute value function

thus reduces to assessing four one-attribute value functions
and four scaling constants. The following section will discuss
the assessment problem, both theoretically and in practice.

Once the one-attribute value functions have been assessed, '

the scaling constants are calculated by solving simultaneous
linear equations or by drawing conclusions from simuitan-
eous inequalities. We have to look for assignments over
which the assessor is indifferent. If x'=(x"y, ..., x',) and
X" ="y, ..., x",) are two assignments such that x" ~x""
then V(x")=V(x'") and this implies 2} l.?\;i?',-(}[i’) =
Zt AV (x")-We need n nonredundant equations to solve
for the # Ay’s. It may happen, especially if discrete attributes
are involved, that we cannot find enough (or even any)
indifferent combinations. We then have to investigate some
of the preference relations and observe the associated in-
equalities between the values from which we can deduce
bounds on the Ajs. We should try to observe enough
inequalities to be able to constrict all the A;’s in narrow

enough intervals.

Assessing the One-Attribute Value Functions

Keeney and Raiffa, in their chapter on trade-offs under
certainty [2], describe two procedures for assessing an
additive value function. We will use here the conjoint scaling
technique referred to as the “Midvalue Splitting Technique.”
In theory, let the range of an attribute X be x, <x<x;,
and let Y be another attribute.

DEFINITION. The pait (g, X,) is said to be differentially
value equivalent to the pair (x., Xxg), where x, < xp and
x, < x4, whenever one is just willing to go from x; to x,
for a given increase of Y, then one would be just willing to
go from x4 to x, for the same increase in .

DEFINITION. For any interval (xq,xp) of X, its midvaiue
point x, is such that the pairs (x4, x.) and (x., xp) are
differentially value equivalent. We seek a one-attribute value
function Vx(x) via the following procedure:

(1) Find the midvalue point of (xo, ¥1); call it xg.5 and
let VX(x0,5)= 0.5.

(2) Find the midvalue point, Xe.7s, of (xgs.x1) and
let Vx(xgas) = 0.75.

(3) Find the midvalue point, Xo2s, of (%o, Xo5) and let

Vx(XQ,zs) ={.25.

(4) As a consistency check, ascertain that xo.s is the
midvalue point of (xO,gs, XQ,75).

(5) Fair in the Vx curve passing through points (x, k)
for k =0, 0.25, 05,075, 1. ‘

This procedure carries no conceptual difficulties as long
as the attributes are continuous. However, if they are dis-
crete, we cannot be assured of finding any of the midvalue
paints Xq.5, X025, ¥0.75 - NO Jevels (i.e., values) which the at-
tributes can take may satisfy the requirements for being Xy
for some &, 0 < k< 1. Several approaches are available to

handle the discrete case {3].

The Actual Assessment

“Value Functions

The four attributes in our analysis relate to physical space
and are treated as continuous descriptors. There is a slight
problem with storage space for heavy parts (A) where the
gross area per unit is 6 m* and we cannot consider fractional
units. Hence only an integer number of units of type A can
be considered, ranging from 0 to 8. When we employed the
midvalue splitting technique for assessment we did not
encounter the need to consider fractional units of type A.
In any case, we validated the assessed velues using other
techniques. Actually, units of Type B and C are also integers,
taking on values between O and 48, but for all practical
purposes those attributes can be considered continuous.
Office space (D) is obviously a continuous attribute.

The derived value functions are presented in Figs. 6
through 9. The procedure for assessing the function over the
superstot space, V;(B), is presented in detail. The relevant
function is presented in Fig. 7. One must note that all four
assessed value functions relate to a space of 48 m?, which is
the only space flexible for different assignments. The initial
72 m? are filled by the minimal requirements that are
common to all assignments and offer no room for flexibility.

Vi {A) A

Fig. 6. Value function for heavy storage space {A}.
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#ig. 7. Value function for shelf storage space (B).
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Fig. 8. Value function for cabinet storage space (C).
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Fig. 9. Value function for office space {D}.

Regarding the supersiot shelves, the decision maker was
first asked the following question: “Suppose you have two
warehouses with all minimal requirements (72 m?) satisfied.
One warehouse has no superslot shelves {beyond the mini-
mal requirement of 25) and the other warehouse has an
additional 24 m® of superslot (for a total of-49 m*). You
can only do one of two things: either i Increase the superstot
space in the first warehouse from 0 to 24 m? or increase the
superslot space of the second warehouse from 24 to 48 m?
Which would you rather do?” The decision maker exl'ublted
preference for the first warehouse, implying that the mid-
value point (whose value is .5 on a 0 - 1 scale) is less than
24. (Or, in other words, the decision valued a shift from 0
to 24 more than a shift from 24 to 48.) When the decision
maker “valued a shift from 0 to 24 more than ashift of
question, he was asked to assess that value of x for which he
would be indifferent between increasing the superslot space
of the first warehouse from O to x m? and increasing the
superslot space of the second warehouse from x to 48 m?.
The desired value of x is the previously defined midvalue
point of the interval {0 - 48). After several rounds and some
consistency checks the answer was x = 18 m?, implying
V3 (18)=.5 [where ¥, (0)=0 and V,(48)=1]}. We similarly
proceeded with the O - 18 range and obtained V,(8) =.25,
and the 18 -48 range where we obtained ¥,{31)=.75.
Faiting in a smooth curve between the five points (0, 0),
(8, .25), (18,.5), (31,.75), and (48, 1), we obtain Fig. 7.
The other three functions were similarly assessed. Note that
the assessment procedure relates only to space and not to
the actual layout of this space.

The final forms of the value functions were obtained
after several rounds of assessment sessions, where many
inconsistencies had to be resolved. Some of the inconsisten-
cies were climinated by using the same assessment technique
(i.e., midvalue splitting), while others requlred using alterna-
tive techniques,

Rafative Sealing Constants {weights)
The overall value function is of the form

4
V(x],. . .,x4)=E?\fV,-(x,-), (1)

=1
where the functions V;(x) were assessed above. To obtain
the relative weights A; (/=1,...,4), we need to establish
four nonredundant equations involving the- four A;’s. One
requirement (for convenience) is Z}_ ;= 1; we need three
other equations that are obtained from indifference relations
between alternative space allocations. The additional avail-
able space is 48 m?, but we did not limit the possible com-
binations to those exhausting the entire space. Three pairs
of equally preferred combinations identified by the decision
maker are:

(24,0,0,24)~(36,0,0,4),

(24,24, 0,0) (36, 0,0, 0),
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and
(36,0,12,0) ~ (48,0,0, 0).

By employing Equation (1), these combinations yield,’

respectively, the following three equations:
?\1 V1 (24) + ?\4 V4 (24) = ;\1 Vl (36) + }\4 V4(4),

)\1 V[ (24) + 7\2 Vz (24) = R] Vl (36) .

and o
?\1 V1(36) +7\3 V3(12) 3?\1 V1(48) .

Reading off the values for Vix)(=1,...,4) from Figs.
6-9 we obtain

757\1 + .95)4 = .97\! + .67\4,

.75R1 + .6-A2 =_.97\1 y

and
.9?\1 + .QS-AQ =?\1 .

Together with
?\1 +7\2 +7\3 +?\4 =1,

the four equations yield Ay = 56, kg = .14, 23 = .06, and
Ny = .24, For any space allocation (A, B, C, D), the value is
siven by V(A,B,C,D) = 5673 (A) +.14V2(B) +.06V5(C) *
24V, (D), where the Vix) (x=1,...,4) are presented in
Figs. 6 -~ 9.

implementation: Evaluating the Altarnative
Area Assignments

The value function obtained in the previous section can now
be used to score each area assignment and provide a prefer-
ence tanking for the various alternatives. It should be

_remembered that the value functions relate to the 48 m?

that are beyond the 72 m® of minimal requirements. Table
2 presents the seven alternative assignments by the number
of square meters allocated to gach of the four space cate-
gories as well as the value (Le., score) assigned to each
alternative by the four-attribute value function.

. . 2
Table 2; The alternative space assignments {m~)
and their score.

Alternative

Space category
1 2 3 4 5 B 7

A. Heavy parts 24 30 30 30 30 24 18
B. Superslot 0 0 0 1 3 7 16
C. Vidmar 19 17 18 17 5 17 3
D. Office 0 1 0 0 0 0 3
Value {score} 478 577 B17 519 515 608 571

As an example of the calculations, the score for Alternative
4 was obtained 2s follows:

V(Altormative 4) = V(30, 1,17,0)= X, 73 (30)
£ 2 Va1) + 2 V5(17) +2aVa(0)
= (.56) (82)+ (.14) (.02)
+ (.06) (96) + (:24) (0) = 5196 .

The resulting ranking of the seven alternatives (from best to
worst) is: 2, 7,4,3,5,6, 1. Theoretically, we could have
stopped here as we achieved our goal and identified assign-
ment 2 as the preferred alternative. However; a closer look
at the individual value functions and scaling constants as
well as the seven proposed assignments suggested that we
can do even better,

Assignment 7 came out a close second, but since it did
not utilize all of the available 48 m® it was considered for
revision. By looking at Figs. 6 - 9, we see that cabinet space
(C) and office space (D)} offer the most rapid improvement

in the value function as long as less than 12 units (of each)

are involved.

On the other hand, the scaling constant for D is .24, four
times bigger than for C. We also would not ignore the high
value put on heavy storage (A), with a coefficient of .56,
Therefore, we tried to augment allocation 7 by increasing
office space or heavy storage space. One suggestion 1o
increase office space resulted in an assignment represented
by the vector (18, 11, 4, 8) whose value was .646, already
superior to all previous assignments. An alternative improve-
ment involved adding two heavy storage units {A) and
decreasing the number of shelf storage units (B) by four
(depicted in Fig. 10), It can be represented by the vector
(30,12, 3, 3) whose value is .654. This last space assignment
was then recommended and accepted by management.
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Fig. 10. Final space assignment.
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This process of refinement would have been very difficult
to achieve without the formal analysis. True, it was known
that heavy storage space was more valuable than other space,
but we did not know the relative magnitude of importance.
We also did not explicitly know the marginal benefit to be
derived from increments within each space category. The
formal analysis of explicitly assessing the individual value
functions and trade-offs among the four competing activities
enabled us not only to rank order the alternatives but also
provided important insight into the design of the actual
layouts,

We have validated the assessed value function by compar-
ing several “simple” area assignments involving only two of
the four space categories. (The decision maker was asked to
rank -those alternatives.) We then applied the value function
to those simple assignments and compared the ranking
yielded by the function to the “manual” ranking. The two
rankings were in complete agreement.

-

Discussion

It has just been demonstrated that, given certain assumptions,
we can rank order area assignments to be consistent with a
decision maker’s perception and -preferences. Here it is
appropriate to discuss those “certain assumptions.” As a
matter of fact, only one assumption, mutual preferential
independence of all space attributes, has been invoked, and
it is claimed to approximate reality. We have actually
invoked a seemingly “weaker” assumption that gvery pair
of attributes is preferentially independent of the remaining
two. However, we have stated a theorem where this assump-
tion implies mutual preferential independence. It is much
easier in practice to verify whether pairs of attributes are
independent of the subset of remaining attributes than it is
to verify mufual preferential independence. This verification
process may, however, become very laborious as the number
of attributes increases.

We have already seen how preferential independence is
interpreted mathematically. Let us now examine how it can
be interpreted in the specific context of our problem
involving space attributes in an allocation. Mutual preferen-
tial independence really indicates a strictly additive contri-
bution of each attribute to the total satisfaction from a
given areaz assignment. The effect of all attributes on the
overall score of an assignment is the simple sum of individual
effects. In other words, no interaction of any kind occurs
between any two aitributes, Therefore, if two attributes
are present simultaneously, each contributes its own effect,
No effect (positive or negative) flows from simultaneous
presence of both space categories. Preferences over ore
space category are unaffected by the space allocated to
another category. B ’

How “real” is the additivity assumption in general? Many
phenomena, consisting of various componenis, can in fact
be evaluated through an additive model of individual compo-
nents. Even if the real situation is not additive, an additive
representation may well serve the relevant purpose. In a

- multiattribute situation, people often tend to evaluate their

preferences for muliattribute factors by thinking in terms

- of additive effects of each attribute. If their thinking and

perception tend to be additive, an additive: assessment
scheme may well serve the purposes. In many instances,

'including interaction of nonadditive effects provides littie

more insight to various evaluations. If there is no obvious
reason to doubt mutual preferential independence, we
should proceed on the premise that additivity does in fact
hold.

There are obvious cases where interaction cannot be
ignored. In our specific application of warehouse area
assignments, let us consider only the net area of each space
category and introduce a fifth space attribute, E, which
desigtiates total forklift access space. If we now consider, for
example, the preference structure over attributes A and B
while holding the other three attributes at fixed lovels, we
may find that this structure depends on the specific lavel
of access space (E). If there is no access space then increas-
ing space A will not necessarily increase the value of a given
allocation because the additional space cannot be used
because of lack of access. As a matter of fact, additional
unusable space of a given type may actually decrease the
value of a given allocation.

Sometimes it is possible to handle such situations by
combining preferentjally dependent attributes into single,
more complex attributes. If space type A is preferentially
dependent on space type E, we can consider an attribute
AE, and hopefully the four attributes, AE, B, C, D will be
mutually preferentially independent. This is what we actu-
ally did, although we achieved this by otiginally considering
the gross space of each attribute as opposed to the net
space. We simply incorporated the needed access space into
the space definition.

There will be cases where the additivity assumption
cannot be *reconstructed,” As an example, consider a
warehouse that has only three different storage methods;
namely, tote storage, bin shelving, and pallet storage. In real
life situations, every item carred in stock will have its
“preferred” storage method based on the activity and cube
of the item. When the item is received it will be stored in
its “preferred” method if storage space is available. If
storage space under the “preferred” method is not avaifable,
the item will be stored under the “next preferred” method,
and so on, until the item is assigned a storage location. Now,
let us assume that all the items with preferred bin shelving
storage will be stored in tote storage if sufficient space is not
available in bin shelving, Under such conditions, how much
space the decision maker is willing to transfer from bin
shelving to pallet storage will be a function of how much
space he is provided with in tote storage.

In our evaluation of area assignment it always makes
sense to use up all the available space of 48 m? (if not, the
total value can always be increased by increasing any of the
spaces so that the total equals 48 m*). This situation totally
ignores costs. Actually, costs could be considered as a
separate attribute and then it maybe possible that a preferred
assignment will not invelve the entire available space, simply
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because the increased contribution of the additional space
will be offset by the high costs of using this space. The
decision makers in our analysis were not concerned with
costs when evaluating the proposed assignments, so this
attribute was not explicitly introduced.

As mentioned earlier, we have focused just on the space
allocation problem. Two layout -designs having the same
space allocated to each category will not necessarily be
equally desirable to management. One could be aesthetically
nicer (e.g., more symmetric) or more functional (e.g.,
proximity of one space category to another). These consid-
erations are important and could perhaps be incorporated
into the analysis by including such additional attributes as
material flow between each pair of departments and its
associated unit cost. We chose not to, simply because we
were presented with seven alternative space assignments
already not in tabular form but as architectural designs of
layouts, and were told to evaluate them salely on the basis
of space allocation. Naturally, the actual layout design
could be a totally different issue but it would be difficult to
separate it from an area assignment.

In an evaluation process such as the one discussed in this
analysis, it may be helpful to assess the multiattribute value
function before the initial design phase. The formal assess-
ment process and the explicit consideration of trade-offs
could provide management and the industrial engineers with
much needed insight and guide them through the assignment
and design phase to come up with superior space allocations.
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