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Abstract — Accurate segmentation of circular arcs from line drawings is essential for higher level

processing in document analysis and recognition systems. In spite of the prevalence of arc segmentation

methods, robust algorithms that perform well in complex graphic environments are scarce, and methods to

evaluate such algorithms are even more rare. Extending our previous work, we propose a comprehensive

system for evaluating arc segmentation. The system models three types of noise that can be found in real life

drawing images: pixel, vector and context. To test the system, we applied it to evaluate an arc segmentation

algorithm and obtained accurate numeric values for the various performance metrics of the algorithm.
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1. INTRODUCTION

The problem of recognizing circular arcs from scanned line drawing, known as arc segmentation, is an

open problem in the area of line drawings interpretation. The difficulty of arc segmentation stems from a
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number of sources. One difficulty is due to the relative complexity of the circle equation. Intersecting and

tangent bars and arcs often smear the arc’s image, creating larger black blobs that are hard to segment

correctly. The raster image of an arc may be distorted disproportionately in different directions. Circular

arcs are very frequently not full circles. Partial arcs, especially those with small angles, are more difficult to

segment than full circles. Finally, various types of noise introduced by drafting, scanning, and binarization

processes further increase the difficulty of arc segmentation.

In spite of the prevalence of arc segmentation methods, comprehensive approaches to the evaluation of

arc segmentation algorithms and their robustness with respect to the problems reported above are scarce.

Existing evaluation reports (e.g., Liu and Dori 1997, 1998, Chhabra and Phillips 1998, Phillips and Chhabra

1999) have focused on definition, selection and calculation of performance metrics of general line detection

algorithms. Pixel type noise generation models include the document image degradation model proposed by

Baird (1990, 1992, 1993) and Kanungo et al. (1993, 1994, 1995). They have been used by Haralick (1992),

Kong et al. (1996), and Hori and Doermann (1996) in their protocols. Vector type noise has been studied to

a much lesser extent. Madej and Sokolowski (1993) proposed a vector-based statistical model of variations

of parcel (land registry) parameters, including length, angle, etc., in ground truthing cadastral maps for

performance evaluation of map recognition and understanding systems.

These are necessary, but not sufficient for testing the performance of arc segmentation algorithms in

complex graphic environments in general and in extreme situations in particular. Liu and Dori (1998), for

example, tested their incremental arc segmentation (IAS) algorithm’s performance only on arcs with varying

thickness, open angles, and radii. While these are important basic parameters to be tested, they do not fully

address many difficulties and obstacles in the way of arc segmentation in real life drawings. Current

performance evaluation protocols are not designed to test the ability of arc segmentation algorithms to

overcome difficulties of the types discussed above.

In this paper, we extend our previous work (Liu and Dori 1997, 1998) and develop a system that builds

on a more comprehensive protocol for evaluating arc segmentation algorithms. Our ground truth generating

process models various noise types that cause arc segmentation difficulties. These are categorized into three

types: pixel, vector, and context. We model several sub-types of pixel noise that may appear in real life
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drawings and add them to our synthetic ground truth drawing images. While modeling the vector type noises,

we vary each parameter in the circle geometry equation to a tolerable extent. To account for context, we

vary the extent and angles of intersecting straight lines and arcs with the arc being segmented. By

calculating the arc segmentation performance on images that were generated using these interference models,

we establish dependable metrics for the evaluation of the capabilities and the robustness of the tested arc

segmentation algorithm.

The rest of the paper is organized as follows. In Section 2 we briefly present our previous performance

evaluation protocol. In Section 3, we present the models of the three types of noise sources used in the

ground truth generation process of our arc segmentation performance evaluation protocol. In Section 4, we

apply the evaluation system on the IAS algorithm (Liu and Dori 1998) using generated images at different

difficulty levels for each of the three noise types. We conclude in Section 5 with remarks on the proposed

system.

2. THE PERFORMANCE EVALUATION PROTOCOL

We define the performance of a graphics recognition algorithm as a set of metrics of interest on the

output data that the algorithm produces with respect to the expected, ground truth data. Usually, the metrics

are expressed in terms related to the difference between the expected output and the actual output of the

algorithm. The metrics should be represented by quantitative indices based on accepted definitions to avoid

subjectivity. Moreover, the entire performance of an algorithm should be reflected by a comprehensive

metric. Appropriate analysis of relevant metrics should help compare, select, improve, and even design new

algorithms to be applied in new systems targeted at specific applications.

Liu and Dori (1999) proposed that a performance evaluation protocol for a graphics recognition system

consists of these three essential elements: (1) ground truthing (ground truth acquisition or generation); (2)

matching; and (3) quantitative metrics. First, the expected output—the ground truth—must be known with

certainty, such that it can be compared with the actual output—the recognition results. Therefore, a sound

methodology of acquiring the appropriate ground truth data is required. Secondly, since both the ground

truth data and the recognition results consist of many graphic objects, individual comparison of each ground
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truth object to its matching recognized object needs to be carried out. To do this, each ground truth graphic

object must first be matched with one or more objects from the recognized objects set. Hence, a sound

matching method is needed. Finally, representative metrics of interest should be selected, and quantitative

indices that measure these metrics should be defined uniformly. The three elements are presented in detail in

the following three sub-sections.

2.1 Ground Truthing

Ground truthing is the process that generates both the actual input image for the evaluated algorithm and

the expected output (ground truth) for comparison with the actual output vector. Following the principles

proposed by Liu and Dori (1999), we design the ground truthing process for arc segmentation algorithms as

follows.

First, we generate in vector form ground truth arcs, as well as optional intersecting lines as sources of

interfering noise. The generated vectors are saved into the ground truth vector file. For the same ground

truth vector drawing, we then introduce various levels of noise for the various noise types while the vector

format is converted into pixel format images. These synthetic images are used as input to the arc

segmentation algorithm being evaluated, while the expected output is the same ground truth vector file. By

modeling the various noise types and levels, the evaluated arc algorithm can be tested with the desired types

and levels of noise that simulate disturbances in real life drawings. By calculating the arc segmentation

performance on these images, we can evaluate the arc segmentation algorithm’s robustness.

As noted, our system handles three types of noise. The first type is pixel noise that can be directly added

onto the image generated from the ground truth vector drawing. The pixels are modified after the pixel

image is generated. The second type is vector noise, which is generated by perturbations of the parameters in

the circle equation while the drawing image is generated. The third type is context noise. Context noise

concerns intersection and interference of arcs with other geometric vector lines and arcs that are added as

part of the vector file before the images are generated. Modeling these three noise types is elaborated in

Section 3.
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2.2 Matching

To measure the difference between ground truth arcs and recognized arcs, ground truth arcs should be

matched with the recognized ones. Problems associated with this procedure relate to the matching algorithm

and what can be considered as a match. Following the principles proposed by Liu and Dori (1999), the

matching degree of a pair of arcs is based on the overlap area and the extent to which the endpoints match.

Let c = k ∩ g denote the arc segment of the recognized arc k that overlaps the ground truth arc g, i.e., c is the

intersection of k and g. The method of calculating c is presented and illustrated in Figure 1. A ground truth

arc and a recognized arc are defined to be overlapping if the overlapping distance (doverlap) is smaller than

half the ground truth line width. As Figure 1 shows, the overlap distance, is defined as the Hausdorf

distance—the maximum of all minimum distances between the points on k and g in the overlap area. The

overlapping distance and the distances between the two arcs at the overlapping segment’s two endpoints

(denoted by d1 and d2) are used to calculate the performance metric, which is defined next.

d1 d2
d1 d2

doverlap = Hausdorf distance between the matched pair, in the overlap area.

gg
k

k

(a) (b)

Figure 1. Illustration of the matching of arcs. (a) two arcs. (b) an arc and a line.

2.3 Performance Metrics

We use the set of performance metrics (Liu and Dori 1997) based on the vector detection quality of the

overlapping segments of every recognized arc and the ground truth arc. In a nutshell, the vector detection

quality is measured by the detection accuracy using a number of criteria, including the endpoints, the

location offset, the line width, the geometry form, and the line style. The vector detection quality of these

overlapping segments as well as their lengths are accumulated for both the ground truth arcs and the

corresponding recognized arcs. The Basic Quality, (Qb)is the length weighted sum of the vector detection

qualities of overlapping segments, the Fragmentation Quality, (Qfr), which is the measure of the detection

fragmentation and/or consolidation, and the Total Quality, (Qv), which is the product of Qb and Qfr, for both
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the ground truth arcs and their corresponding recognized arcs. The total Vector Detection Rate, Dv is length

weighted sum of Qv of all ground truth arcs, the Vector False Alarm Rate, Fv, which is the length weighted

sum of 1–Qv of all recognized arcs, and the resulting Vector Recovery Index, VRI=(Dv+1–Fv)/2.

3. MODELING DRAWINGS NOISE (COMPLEXITY)

Real engineering drawings frequently do not follow strictly the ideal geometrical shapes. Various types

of noise at various levels are added to the drawings while they are drawn, stored and digitalized. The test

drawing images are therefore similar to Non-Photorealistic Rendering (NPR) pictures. We generate the input

images from the standard ground truth vector drawings. Vector and context noise types are introduced while

generating the vector file while pixel noise is added later on.

For each noise type we generate a series of images with varying noise levels. Some of the noise types

are further classified into noise subtypes. The evaluated arc segmentation algorithm is applied on each

image and the arc recognition results are compared with the synthetic ground truth file. The algorithm is

evaluated separately for each noise type to test its robustness with respect to this type of noise. Below we

provide a model for each noise type.

3.1 Pixel Type Noise

The pixel type noise is classified into three subtypes: Gaussian noise, high frequency noise, and hard

pencil simulation.

3.1.1 Gaussian noise

Gaussian noise is common in real life drawings. It is introduced into the digital image of the drawing by

such factors as degrading paper quality and scanning effects. The Gaussian noise generation is accomplished

as follows. We first generate a Gaussian random variable and map it onto the range [0, 255]. Gaussian

distribution is generated using uniform distribution by assuming an n-dimensional random variable

}1,{ nkYk ≤≤ of independently identical distribution (i.i.d.), and kY is a uniform random variable ]1,0[U .

We set ∑
=

=
n

k
kn YX

1

and denote )(xfn as the probability density function (p.d.f.) of nX .
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The probability distribution function of a Gaussian random variable has the form
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Using the Central Limit (Lindeberg-Levy) theorem (Heaton 1993) below, when ∞→n , nZ
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When we set 12=n , the result of nZ is a close approximation of the Gaussian distribution. nZ is

generated with value between 0 and 1. It is then multiplied by 255 and rounded. To get a grayscale image,

we add this number to the original binary pixel value or subtract it as follows. If the original value is 0, we

simply use the sum as the new pixel value. Otherwise, we use nZ−255 as the new value, because in black

area, white pixel is noise, and the brighter the white pixel appears, the stronger the noise is.

Note that in the first step kY is a random variable between 0 and 1. If we change its range to [0, L], with

L being a non-negative integer, then the distribution of nZ changes accordingly. Since µ and σ describe

the position and shape of a Gaussian random variable, σ changes along with L, so increasing L increases

the Gaussian noise in the image. We use L to control the noise level at the Gaussian subtype of the pixel

type noise. L=0 means that there is no noise. Finally, since arc recognition algorithms are usually designed

to work with binary images, we apply a 50% threshold to convert the picture into a binary TIFF file.

Figure 2 illustrates the effect of Gaussian noise. Figure 2(a) shows an original drawing (L=0), to which

Gaussian noise with L=8 is added and its gray scale image is shown in Figure 2(b). Figure 2(c) shows the

noisy image (L=8) after Figure 2(b) has been binarized with a 0.5 threshold. Figure 2(d) shows the binary

noisy image with L=5 and Figure 2(e), with L=2.
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(a) (b) (c) (d) (e)

Figure 2. Illustration of Gaussian noise effect. (a) Original drawing (L=0), (b) Gray scale image with Gauss noise (L

=8), (c) Binary noisy image (L=8), (d) Binary noisy image (L=5) , (c) Binary noisy image (L=2).

3.1.2 High frequency noise

In most engineering drawings, the boundary of the lines is often jagged because the paper is not quite

flat, the ink is not uniform and the scanning adds more noise. The boundary where white and black areas

meet is a high frequency area. We model this type of noise as diffusion of pixels through the boundary of the

line using high frequency noise. Figure 3 illustrates arc-related terms used to explain our high frequency

noise model.

width=w �

�

angle

radius

endpoint1

endpoint2

medial axis

Figure 3. Illustration of arc-related geometric terms

Each black pixel in the arc is at a certain distance from the medial axis. The greater the distance, the

more likely the pixel is to switch its color from black to white, such that near the boundary many pixels

become white, making the edge rough. High frequency noise is simulated by a 2D-DFT operation in the

frequency domain, which is then converted back the image pixel domain. As known from convolution theory,

)]([)]([)](*)([ 2121 tfFtfFtftfF •= . Using this equation, instead of multiplying high frequency noise in

the frequency domain, we use convolution to convert an image in the spatial domain. First, we create a
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randomly generated L × L bitmap file to be used as the convolution kernel. Since the size of this image

affects the granularity of the processed picture, it is used to control the noise level of the high frequency

subtype of noise. We then convolute this kernel bitmap with the original bitmap file of the synthetic drawing

and get the high frequency test file with different noise levels, which are determined by L. After the

convolution, each pixel value is between 0 and L2
*2562. Since the recognition algorithms are designed to

operate on binary files, we apply a 50% threshold to convert the convolution result into a binary TIFF file.

Figure 4 presents the original image and the results of introducing high frequency noise with L= 1, 3, and 5.

(a) Original image (L=0) (b) L =1 (c) L =3 (d) L =5

Figure 4. Effects of high frequency noise

3.1.3 Hard pencil simulation

Many hand drawings use hard pencil. Due to the paper’s texture, when the pencil leaves its mark on the

paper’s surface, some places remain untouched, leaving tiny white lines across the black lines. We stimulate

this phenomenon by the scan line method. We scan the picture using a line, whose expression is given by

kyx =+ , hwk += ,...,1,0 , where w is the width of picture and h is the height. Each scan line crosses

white areas and black areas. When it crosses a white area, nothing is done, but when it reaches a black area,

the hard pencil noise may be added to it. At each pixel in the original image, we generate a random number

between 0 and 100 and compare it to a fixed threshold T, which is used to control the noise level. If it is less

than T, a three-pixel-long white line is drawn at 450 on top of the original black area. If this white line

extends out of the black area, its tail is cut off, effectively ignored. Hence, the threshold T is effective only if

it is less than about 33. Longer simulated pen strokes decrease this number. For example, for a three-pixel-

long white line, this number is 20. By properly choosing the threshold values T, different levels (L=T) of

hard pencil noise can be generated. The larger the threshold value, the more white lines are possibly drawn

on the black area, and thus the stronger the noise is. The effects of hard pencil noise are shown in Figure 5.
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(a) Original Image (T=0) (b) T =1 (c) T =2 (d) T =4

Figure 5. Effects of hard pencil noise

3.2 Vector Type Noise

For the pixel noise type, all the noise subtypes are added pixel by pixel, independently of the geometry

of the shape. The vector noise takes into account the parameters of the shape’s geometry. An arc is

determined only when its center point, radius and width are fixed. In hand made drawings, the radius may

vary for a variety of reasons, such as the use and quality of the compass and paper, as well as the paper’s

non-uniform stretching or shrinking due to dampness. The arc’s radius, center and width may therefore

slightly fluctuate around their original values. To account for these variations, we need to design the arcs

with a non-zero variance for each of these three parameters. A simple method to add vector type noise is to

multiply the central point, radius and line width by a random number around 1 while using DDA or

Bresenham algorithms (Foley et al. 1995) to draw an arc. However, as Figure 6 shows, this method is not

useful because independent random numbers at adjacent points along the arc may result in abrupt changes

along the arc, such that the arc is broken into several arcs, each having its own center point, radius and line

width.

Figure 6. Broken arc due to independent random numbers used in radius variation

To solve this problem or modeling radius variation, we apply random walk using the Brown Movement

stochastic process. We denote the arc radius at a point on the arc using Brown Movement }0),({ ≥ttX ,

with t representing the central angle θ of the point to the X-axis. We divide the entire arc into several pieces

with equal central angle ∆θ . The radius within each piece is fixed. Since in a digital image, the pixel is
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discrete, “continuous” means that there are no white pixels separating the continuity of the arc. We therefore

restrict the radius variation between two adjacent arc pieces to one pixel. Brown Movement meets this

condition. The noise level L is determined by ∆θ. The smaller ∆θ, the more pieces of arcs comprise the arc

and thus the stronger the noise. We define )/2ln( θπ ∆=L to represent the vector noise level. Figure 7

shows a clean drawing (a) and distorted arcs at L=8 (b) and L=11 (c).

(a) Ground truth Drawing (L=0) (b) L=8 (c) L=11

Figure 7. Effects of vector type noise

3.3 Context Type Noise

Arc segmentation is affected by the context in which the arc is situated in the drawing, i.e., other graphic

objects in its neighborhood. For example, when a line and an arc are tangent, some algorithms mistake them

for crossing lines or are otherwise fooled. To simulate basic context noise, we consider the interaction

between an arc and a line segment and between an arc and another arc. As Figure 8 show, since both the line

and the arc have non-zero widths, the tangent position is not uniquely defined. We define the tangency noise

level L as the distance between the two lines’ medial axes at the tangent point. L is then normalized to 0~10

by computing L=10 |d1 − d2| / (W2/2).

w1

w2

o

d1
d2

Figure 8. The tangent position of an arc and a line with non-zero line widths
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4. PERFORMANCE EVALUATION OF THE IAS ALGORITHM

In this section, we test the IAS algorithm’s performance using the metrics defined in Section 2.3 over

the images generated in Section 3. We gradually increase the noise level of each noise type and examine the

corresponding performance change of the algorithm. This way we can test how robust the algorithm is with

respect to each type of noise.

4.1 Impact of Pixel Type Noise

The ground truth vector drawing we used in this test is shown in Figure 9 (Liu and Dori 2001).

Figure 9. Illustration of The ground truth vector drawing used for testing performance impact of pixel type noise and

vector type noise

4.1.1 IAS’ Performance with respect to Gaussian Noise

In this test, we obtain the IAS’ performance metrics with respect to Gaussian noisy images with levels

varying between 0 and 8. The results are presented in Table 1 and the performance curve is shown in Figure

10.

Table 1. IAS’s performance metrics over Gaussian noisy images of levels from 0 to 8

Level (L) 0 1 2 3 4 5 6 7 8

Dv 0.740 0.740 0.772 0.734 0.649 0.462 0.374 0.271 0.128

Fv 0.229 0.229 0.197 0.169 0.205 0.265 0.280 0.421 0.651

VRI 0.755 0.755 0.787 0.782 0.722 0.598 0.547 0.425 0.239
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Figure 10. IAS’ performance curves over Gaussian noisy images of levels from 0 to 8

From Figure 10 we can see that, as expected, as the Gaussian noise level increases, the performance

decreases. When L reaches 6, the performance decreases dramatically. Hence, we can say that the IAS

algorithm performs well when the Gaussian noise level is less than 6 and is not suitable for the situation

when L is larger than 6.

4.1.2 IAS’ Performance with respect to High Frequency Noise

In this test, we obtain the IAS’ performance metrics with respect to high frequency noisy images with

levels between 0 and 22. The results are presented in Table 2 and the performance curve is shown in Figure

11.

Table 2. IAS’s performance metrics over high frequency noisy images of levels from 0 to 22

L 0 2 4 6 8 10 12 14 16 18 20 22

Dv 0.740 0.742 0.740 0.709 0.726 0.711 0.691 0.664 0.642 0.624 0.583 0.387

Fv 0.229 0.157 0.126 0.148 0.130 0.110 0.121 0.129 0.134 0.151 0.163 0.275

VRI 0.755 0.793 0.807 0.781 0.798 0.801 0.767 0.749 0.744 0.737 0.710 0.556
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Figure 11. IAS’ performances curve over high frequency noisy images of levels from 0 to 22
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From Figure 11 we can see that as the high frequency noise level increases, the performance decreases

only slightly when the noise level is not very high. When L reaches 20, the performance decreases

dramatically. Hence, we can say that IAS works fine when the high frequency noise level is less than 20 and

is not suitable for the situation when L is larger than 20.

4.1.3 IAS’ performance with respect to Hard Pencil Noise

In this test, we obtain the IAS’ performance metrics over hard pencil noisy images of levels from 0 to 7.

The results are presented in Table 3 and the performance curve is shown in Figure 12.

Table 3. IAS’ performance metrics over hard pencil noisy images of levels from 0 to 7

L 0 1 2 3 4 5 6 7

Dv 0.740 0.616 0.603 0.289 0.160 0.151 0.112 0.105

Fv 0.229 0.177 0.205 0.373 0.586 0.611 0.711 0.728

VRI 0.755 0.719 0.699 0.458 0.287 0.270 0.200 0.188
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Figure 12. IAS’ performance curves over hard pencil noisy images of levels from 0 to 7

From Figure 12 we can see that as the hard pencil noise level increases, the performance decreases.

When L reaches 3, the performance decreases dramatically. Hence, we can say that IAS works fine when the

hard pencil noise level is less than 3 and is not suitable for the situation when L is larger than 3.

4.2 Impact of Vector Type Noise

In this section, we test the impact of vector type noise on the performance of the IAS algorithm. Using

Figure 9 as the ground truth vector drawing image for this test, we vary the vector noise level from 0 to 11
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and obtain corresponding performance metrics shown in Table 4. The performance curves are shown in

Figure 13.

Table 4. IAS’ performance metrics over vector noisy images of levels from 0 to 11

L 0 1 2 3 4 5 6 7 8 9 10 11

Dv 0.740 0.744 0.751 0.682 0.727 0.701 0.690 0.665 0.645 0.620 0.575 0.600

Fv 0.229 0.224 0.203 0.258 0.230 0.238 0.245 0.244 0.291 0.305 0.355 0.308

VRI 0.755 0.760 0.774 0.712 0.749 0.732 0.723 0.711 0.677 0.658 0.610 0.646
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Figure 13. IAS’ performance curves over vector noisy images of levels from 0 to 11.

From Figure 13 we can see that as the vector noise level increases, the performance decreases slowly

and gracefully without any sudden breakdown point. Hence, we can say that IAS works fine when the vector

noise is within reasonable level.

4.3 Impact of Context Type Noise

In this section, we test the impact of different levels of context type noise on the performance of the

IAS algorithm. We use the arc and the interfering line shown in Figure 14 (Liu and Dori 2001) as the ground

truth vector drawing for this test. By slightly moving the line away from the arc’s medial axis, we vary the

context noise level from 0 to 7 such that the line is kept “tangent” to the arc. The performance metrics are

shown in Table 5 and the performance curves are shown in Figure 15. As the context noise level increases,

the performance varies only slightly at the high performance level. Hence, we can say that IAS works fine

with tangency noise.
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Figure 14. Ground truth drawing for testing impact of context level noise

Table 5. IAS’ performance metrics over context noisy images of levels from 0 to 7

L 0 1 2 3 4 5 6 7

Dv 0.863 0.940 0.902 0.748 0.927 0.888 0.811 0.778

Fv 0.153 0.073 0.113 0.084 0.086 0.125 0.086 0.109

VRI 0.855 0.933 0.894 0.832 0.920 0.882 0.863 0.834
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Figure 15. IAS’ performance curves over context noisy images of levels from 0 to 7

5. CONCLUDING REMARKS

An elaborate performance evaluation system that uses a multi-attribute protocol for arc segmentation

algorithm has been presented. The protocol accounts for three types of noise: pixel, vector and context. Each

noise type has several subtypes, and each subtype has a number of control variables. This rich testing

environment provides for a sophisticated, accurate and flexible way of assessing various aspects of arc

recognition quality. We have implemented the protocol and applied it to carry out a comprehensive

evaluation of the Incremental Arc Segmentation (IAS) algorithm (Liu and Dori 1999). Experiments show

that the IAS algorithm is robust to various noise types at reasonable levels. We plan to apply the system in

the upcoming Arc Segmentation Contest in the International Workshop on Graphics Recognition 2001 in

Kingston, Canada, September 7-8, 2001 (Liu and Dori 2001).
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