2004 Society for Design and Process Science
Printed in the United States of America

OBJECT-PROCESS DIAGRAMS AS EXPLICIT GRAPHIC
TOOL FOR WEB SERVICE COMPOSITION

Yin Liu
Tongji Center of National Engineering Research Center for High Performance Computer,
Department of Computer Science, Tongji University, Shanghai, P.R. of China

Liu Wenyin
Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong
Kong SAR, P.R. of China

Changjun Jiang
Tongji Center of National Engineering Research Center for High Performance Computer,
Department of Computer Science, Tongji University, Shanghai, P.R. of China

Web Service composition has become increasingly important with more and more Web Services
developed and deployed on the Web. It requires a formal and clear representation for analysis,
design, and implementation. The Business Process Execution Language for Web Service
(BPEL4WS), which is an XML-based language, provides a good basis to describe Web Service
composition. However, it still lacks a formal, explicit and graphic representation for visual
modeling of the composition process and result. The Object-Process Methodology (OPM) has been
shown to successfully describe the structure and behavior of systems using an integrated and
coherent set of Object-Process Diagrams (OPDs). It should also be suitable to describe Web
Service composition. In this paper we will discuss the extensions which are necessary to OPM in
order to describe Web Service composition. We propose several mapping rules between BPEL4WS
and OPD that are identical to the rules between Object-Process Language (OPL) and OPD so that
the OPD set can be automatically created from existing BPEL4WS documents and BPEL4WS
documents can be generated from the OPD set automatically, with some manual work. With the
visual and explicit representation of Web Service composition, it will make the design and
implementation of the composed services easier and more comprehensive.

Keywords: Object-Process Methodology, Web Service Composition.

1. Introduction

Web Services are self-contained, self-describing software components which can be published,
discovered and invoked across the Web. The objective of developing and using Web Services is to
achieve universal interoperability between applications by using Web standards. Web Services use a
platform-neutral protocol and a loosely-coupled model in order to allow flexible integration of
heterogeneous systems in a variety of domains including B2C, B2B, as well as enterprise applications.
The building blocks of the platform-neutral protocol are Web Service Description Language (WSDL),
Universal Description, Discovery and Integration (UDDI), and the Simple Object Access Protocol
(SOAP), which are all based on XML language. The loosely-coupled model, which we want to discuss
in this paper, is Web Service composition.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 113-127

As the capability of an individual Web Service is limited, it is necessary to create new
functionalities with existing Web Services in the form of processes or flows. Web Service composition
is, as explained in (Casati, et al., 2000 and Piccinelli, 1999), the ability to take existing services (or
building blocks) and combine them to form new services. Though WSDL has provided a model of
synchronous or asynchronous interactions for Web Service composition, the real application of Web
Service composition is more complex than that. In order to solve this problem, several standards have
been proposed.

Web Service Flow Language (WSFL, 2001) and XLANG (XLANG, 2001) are two of the earliest
languages to define the standards for Web Service composition. Both of them extend WSDL and
provide their own models for Web Service composition. WSFL is proposed as an XML-based language
and uses Flow Model and Global Model to describe complex service composition. XLANG extends
WSDL with behavioral specifications to provide a model for orchestration of services. Later, Business
Process Execution Language for Web Service (BPEL4WS, 2002) is proposed as a convergence of the
ideas in XLANG and WSFL specifications. It combines the best of both WSFL (e.g., support for
concurrent processes) and XLANG (e.g., structural constructs for processes) into one cohesive package
that supports the implementation of any kind of business process in a very natural manner. Hence, in
this paper, we focus our discussion on BPEL4WS.

The representation of a composed Web Service using BPELAWS is a set of XML documents, which
are usually very long and cannot be understood easily. After several case studies on BPEL4WS were
done, we found that there is little work on the graphic representation of Web Service composition and
that it is necessary to find a graphic tool to visually model the composition work in BPEL4WS. This is
the motivation of our OPD-based approach. With the help of the formal and explicit representation of
OPDs (which will be explained in detail later), it is easy for us to understand the underlying mechanism
of the composed Web Service and to accurately implement the final system.

Object-Process Methodology (OPM) (Dori, 1995 and 2002) is a framework for system modeling
and engineering, which has been shown to successfully describe the structure and behavior of systems
within an integrated and coherent set of Object-Process Diagrams (OPDs) (Dori, 1995 and 2002). OPM
includes a clear and concise set of symbols that form a language enabling the expression of the
system’s building blocks as well as their relationship to each other. In other words, it is a symbolic
representation of the objects in a system and the processes they enable. Objects and processes,
collectively referred to as “things”, are the two types of OPM’s universal building blocks. With these
two basic building blocks, OPD can serve as a formal and explicit graphic tool or language (actually, a
visual programming language) for modeling the concurrent system in the world of Web Service
composition.

Generally speaking, our approach to Web Service composition is based on OPD and BPEL4WS.
We use BPEL4WS as the language to specify composed processes and OPD as the graphic tool to
visualize the implementation framework of the final system. The major work in the paper is to define
several OPD templates for BPEL4WS elements, which are XML tags with specific semantics. An OPD
template is a pre-defined sub-OPD which is used to describe a specific control flow. Some parts of an
OPD template are defined as variables and require modification when it is used in practice. With these
templates it is possible for us to automatically create OPDs from existing BPEL4WS documents for
better understanding, or to design a composed service in OPDs and then generate BPEL4WS
documents from them.

Specifically, an equivalent link, which is a new extension to OPD, is introduced in this paper. It
expresses an equivalence relationship between two things (objects or processes). Its semantics will be
explained in the overview of OPD and detailed usages will be presented when we introduce OPD
templates for BPEL4WS elements.

In the following sections, we will first give an overview of BPEL4WS and OPD as background
material. Then, several mapping rules between OPD and BPEL4WS will be presented, in which a set

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 114

of OPD templates that represent elements in BPEL4WS is defined. Based on these templates, an
example in the real world will be presented to illustrate the application of our OPD-based approach to
Web Service composition. Finally, we will present a concluding remark to summarize our work.

2. Background

In this section, we will give an overview of BPEL4WS and OPD. We will first introduce
BPEL4WS briefly and divide its elements into 5 categories, which will be analyzed one by one in the
next section. Then the concepts and symbols of OPD will be introduced and a table of graphic symbols
will be presented that we will use for Web Service composition.

2.1. Overview of BPEL4WS

Business Process Execution Language for Web Service (BPEL4WS, 2002) is first proposed by BEA,
IBM, and Microsoft. It consists of a set of XML tags, which define the notation for specifying process
behaviors based on Web Services. BPELAWS provides an XML-based language for the formal
specification of business processes and business interaction protocols. In this section, all BPEL4WS
elements are classified into 5 categories, as shown in Table 1, for better understanding and analysis.

Table 1 Categories of elements in BPEL4WS

Category Elements Category Elements
Structural Control <process> Data Structure <property>
Elements <scope> Elements <propertyAlias>
<flow> <correlationSets>
<sequence> <correlations>
<receive> <containers>
<pick> Service Related <serviceLinkType>
<reply> Elements <serviceReference>
<switch> <partners>
<while> Exception <faultHandlers>
<links> Handling Elements | <compensateHandler>
Functional Elements | <invoke> <compensate>
<assign> <throw>
<wait> <catch>
<empty> <catchAll>
<terminate>

1) Structural control elements are the building blocks of control flow of the composed service.
<process> is the top-level element which represents a composed service. <scope> is used to define
a domain with its own exception and compensation handler. <flow> and <sequence> are activity
containers, in which activities can be executed concurrently or in sequence of definition.
<receive> and <pick> can wait for one or several messages on operations of specific ports. When
<receive> waits for a request-response operation, the corresponding response is returned by
<reply>. This pattern indicates a synchronous interaction between the partners and the composed

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 115

2)

3)

4)

5)

service. The <switch> element provides a mechanism of conditional branching. The <while>
element presents a while-do loop for iteration. Because the activities in the control flow can be
executed concurrently, a synchronization mechanism is required and supported by the <links>
element.

Data structure elements allow us to preserve the states of current interaction and define the input
and output data structures for each operation. <property> defines a global unique name of a token
for correlation of service instance with messages. Through the <propertyAlias> element, a
<property> is mapped to a part of a specific message. When a business process is launched, each
Web Service involved should create an instance for itself. Because there will be several instances
on the same Web Service, the messages sent to it should be distinguished and delivered to
corresponding instances. <correlationSets> and <corrections> provide a common mechanism for
it. <correlationSets> defines a set of properties whose values identify an instance on a Web
Service. <correlations> is used to pass this identification in the interaction with external Web
Services. The <container> element can be regarded as a global value of a specific message type,
which will be used as the input and output when invoking an operation of an external Web
Service.

Functional elements provide some useful functions for Web Service composition. With the
<invoke> element, an operation of an external Web Service can be invoked. The <assign> element
is used to do some simple calculations and set the values of the containers. The <wait> element
provides a mechanism for event and timeout. <empty> is an activity which does nothing. The
<terminate> element will stop the execution of a current instance.

Service-related elements describe the external requirements of the composed Web Service, which
is important for deployment. <serviceLinkType> consists of one or two port types of related Web
Services. It is used to define a <partner> in the composed service. The <partner> element also
defines the role of the composed service. The <serviceReference> element is used to describe an
external Web Service. Since these notions are just preliminary and a standard for them does not
exist, they will not be further elaborated on later in detail.

Exception handling elements describe the exception and compensation mechanism in BPEL4WS.
Exception is introduced into BPEL4AWS as a formal method to handle fault messages returned
from an operation. <faultHandlers> can be installed into several elements to handle the exceptions
which occur inside it. <catch> and <catchAll> elements are enclosed in <faultHandler> to catch
specific exceptions. <throw> is used to throw an exception in certain situations. When an
exception occurs in an activity, the job, which has been finished successfully in the activities that
are enclosed in the current activity, should be rolled back and some compensation operations,
which are defined in the business logic, should be taken for these activities. These operations are
defined by <compensateHandler>. The <compensate> element is used to invoke compensation
operation of an activity that has already completed its execution normally.

2.2. Overview of OPD

The Object-Process Methodology (OPM) (Dori, 1995 and 2002) is a system analysis and design

approach that combines ideas from OOA and DFD within a single modeling framework to represent
both the static/structural and dynamic/ procedural aspects of a system in one coherent frame of
references. The use of a single model eliminates the integration problem and provides clear
understanding of the system being modeled. The object-process diagram (OPD) (Dori, 1995 and 2002,
Liu and Dori, 1999) is OPM’s graphic representation of objects and processes in the universe of
interest along with the structural and procedural relationships that exist among them. Due to synergy,
both the information content and expressive power of OPDs are greater than those of Data Flow
Diagram (DFD) and Object-Oriented Analysis (OOA) diagrams combined.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 116

In OPM, both objects and processes are treated analogously as two complementary classes of
things, elementary units that make up the universe. The relationships among objects are described
using structural links, such as aggregation-participation and generalization-specialization. The
relationships between objects and processes are described by procedural links, which are classified into
effect, agent, and instrument links. Symbols of them are illustrated in Fig. 1.

A very important feature of things (objects and processes) in OPDs is their recursive and selective
scaling ability, which provides complexity management through control of the visibility and resolution
of the things in the system. In general, things are scaled up (zoomed in) as we proceed from analysis to
design, and then to implementation. The scaling capability provides for function definitions and calls.
Specifying generalization-specification among processes enables the establishment of inheritance
relations among processes in a manner similar to inheritance among objects.

A thing is the elementary unit that makes up the universe. An object is a persistent, unconditional
thing. A process is a transient thing, whose existence depends on the existence of at least one object.
These terms are originally proposed for system analysis in OPM (Dori, 1995 and 2002). From the
design and implementation viewpoint, an object can be regarded as a variable with a specified data
type, while a process is a function or a procedure operating on the variables, which are objects. A state
of a thing at a given point in time is the set (or vector) of attribute values the thing may have at that
point in time. Object, process and status together are referred to as entities in OPM.

Certain structural relations between two objects, namely Aggregation-Participation, Featuring-
Characterization, and Generalization-Specialization, collectively referred to as the fundamental
relations, are represented by a triangular symbol along the link that connects them. Aggregation-
Participation describes the relationship of composition between two objects. The meaning of Featuring-
Characterization’s follows its name: It is the relation between a feature - an attribute or an operation
("method", "service") and the thing that the feature characterizes. The Generalization-Specialization
link between two objects induces an inheritance relationship between two object classes. The
Instantiation link indicates an object is an instance of a class.

Things Structural Relations Procedural Links

Object I:I Aggregation-Participation A Agent link —e
Featuring-Characterization A Instrument link —— O

Process O o L)
Generalization-Specialization A Effect link <>

State/Value C] Instantiation & Consumption/ _— >
Equivalent link* - result link
Data link — | Control link -————>

Fig. 1 OPD symbol set for Web Service composition

In this paper, a new link is proposed, referred to as equivalent link, as an extension to OPD. An
equivalent link describes two kinds of equivalence: the equivalence between processes and the
equivalence between objects. The equivalence between processes can be regarded as a proxy-
implementation relationship between them, which means that one process is the implementation of the
function and the other is just a proxy of it. The equivalence between objects means one object is just an
alias of the other, and their value should be deemed unique.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 117

Agents and instruments are enablers of processes. They exist before the process execution and their
state (set of attribute values) is not altered by the process execution. An effect link connects an affected
object to the affecting process. An affectee is an object whose state is altered by the process. A
consumed object is an object that is consumed (and destroyed) by the process and no longer exists after
the process execution. A resulting object is a new object constructed as a result of the process
execution. The consumption link is graphically represented by a one-way arrow, directed from the
consumed object to the consuming process. The result link is also represented by a one-way arrow, but
the arrow in this case is directed from the process to the resulting object. The effect link is represented
by a two way (bi-directional) arrow between the affected object and the process.

3. Mapping Rules between OPD and BPEL4WS

In this section, we will present several mapping rules between OPD and BPEL4WS, which focus on
how to represent elements in BPEL4WS using the OPD approach. Several specific OPD templates,
which are pre-defined sub-OPDs used to describe specific control flows, will be introduced in order to
describe the structural control elements in BPEL4WS. Some parts of an OPD template are defined as
variables and require modification when it is used in practice. We will also propose an equivalent link
as an extension for OPD, which is necessary for representing certain elements of BPEL4WS by using
OPD. With these mapping rules, an OPD set can be easily created from existing BPEL4WS documents.

3.1. Structural Control Elements

The <process> and <scope> elements are used to define a domain which has its own fault and
compensation handler. <process> is the largest domain in the composed service and will be regarded as
the top-level OPD. Each time when a <scope> element is required, a new process needs to be inserted,
representing this scope, into the current OPD and a new OPD for it needs to be created. We call this
process SCOPE template.

Both <flow> and <sequence> elements are activity containers which hold a set of activities and
specify the invoking sequence of these activities. The activities, which are enclosed in a <flow>
element, can be executed concurrently, whereas the activities, which are enclosed in a <sequence>
element, can only be executed as defined by the sequence. FLOW and SEQUENCE templates of OPDs
are used to represent them, respectively. In a FLOW template all processes are laid on the same level,
but in a SEQUENCE template, the control link (Liu and Dori, 1999) should be introduced to present
sequential relationship between processes. Fig. 2 illustrates these two templates.

<receive>, <pick> and <reply> are the elements which provide the message-exchanging methods of
a composed service. The <receive> element represents a process which waits for a specific message.
The <pick> element represents a process which waits for a set of messages and executes a specific
activity for each message. Once a message is received in <pick>, all other waiting operations are
canceled. The <reply> element determines output of the composed service. The RECEIVE, PICK, and
REPLY templates are used for each of them. Fig. 3 illustrates these three templates. In Fig. 3 OP
represents an operation of an external Web Service, and P1, P2 ... Pn represent sub-processes in the
PICK template. These abbreviations will also be used in the following figures. In order to simplify the
representation, in Fig. 3 the correlation issue is not introduced, which is important and related to these
elements and will be further detailed in the discussion of the <invoke> element.

Here we introduce the first usage of an equivalent link as a way to invoke an operation of a port for
an external Web Service. The graphic representation of an equivalent link is a dashed line with arrows
on both ends. The semantics of the equivalent link when it connects two processes is that one process is
the implementation and the other is the proxy. In the world of Web Services, it means that the
operations of these two processes are “dual,” as explained in (WSFL, 2001), that one is solicit-response

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 118

operation and the other is a request-response operation, or one is a notification operation and the other
is a one-way operation.

FLOW SEQUENCE
\%4

A |

<

Fig. 3 REPLY, RECEIVE, and PICK templates

Both <switch> and <while> elements are used for flow control in BPEL4WS. The <switch>
element provides a mechanism of conditional branching, whereas the <while> element presents a
while-do loop for iteration. We use SWITCH and WHILE templates in Fig. 4 to represent them,
respectively. C1, C2 ... Cn are conditions for all cases involved in the <switch> element.

SWITCH WHILE f —>@

Checking Result Testing Result

........ Loop --
N
g rocess

Y |

Fig. 4 SWITCH and WHILE templates

The last but most important element in flow control is the <links> element. Recalling that the
activities in the <flow> element can be executed simultaneously, it is natural that a synchronization

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 119

mechanism is required. The <links> element works with the standard elements of an activity to achieve
this objective. If an activity is the source of a link, it probably has a transition-condition which
indicates whether the link is enabled or disabled. Each activity will have a join-condition which
determines whether this activity should be executed or skipped. We use an ACTIVITY template in Fig.
5 to wrap any activity which is the source or target of a link in the composed service.

Join Condition Previous Processes

Checking Result Transition Condition |

(o) -

Internal Process

ACTIVITY

“Z

| Transition Condition

\%

Transition Condition

Fig. 5 ACTIVITY template

3.2. Data Structure Elements

All data structures in BPEL4WS, including message, property, container, and correlation set, can be
represented as objects and structural links of OPD. A message defined in WSDL with a group of data
members is represented with an aggregation-participation structural link in OPD; and a container
defined in BPEL4WS, which is a global variable of specific message type defined in WSDL, can be
regarded as an instance of a message type, which is represented with an instantiation structural link in
OPD. See the following example in Fig. 6.

Customer Tax payer
| Customer ID Tax payer ID |

Customer Container | -->| Social Security No. |[€--- | Tax payer Container

Fig. 6 Example for message, container, and property alias

<property> and <correlationSets> are often used together to represent instance related data. For
example, a social security number, which identifies an individual tax payer, is an instance-related data
in a long-running multiparty business process regarding a tax matter. [t may appear in various parts of
different messages, but in a specific instance, the value is unique. <property> defines a global unique
name of a token for correlation of service instance with messages. Through the <propertyAlias>
element, a <property> is mapped to a part of a specific message.

Here the second usage of the equivalent link is introduced as a way to present equivalence between
parts of different messages, which means that the related parts in different messages should be

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 120

identical. The example in Fig. 6 demonstrates such a scenario. Social security number, which is unique
and used to distinguish messages between instances, is mapped to two parts of different messages.

Each correlation set in BPEL4WS is a named group of properties that serve to define a way of
identifying an application-level conversation within a business protocol instance. A given message can
carry multiple correlation sets. A correlation set can be used in the <correlations> element which
appears in the <invoke>, <receive>, <reply> and <pick> elements. According to the pattern and
initialization flag of the <correlations> element, the properties in a correlation set are copied to or from
the output or input messages. A detailed example of correlation will be explained in the discussion of
the <invoke> element in the next section.

3.3. Functional Elements

The <invoke> element is used to interact with external Web Services. An INVOKE template is used
to represent it. An equivalent link is used here to represent the “dual” relationship between the process
and the external Web Service. The INVOKE template can be regarded as a sub-process of RECEIVE,
REPLY, and PICK templates because it introduces the correlation issue which is not discussed in the
above sections. We should use an INVOKE template in Fig. 7 to replace the Receive, Reply, and Pick
processes in the above templates in practice.

Input Correlation

Copy Process

Invoking P@(. S

Copy Process

| Input Container |

> External OP

INVOKE

Output Correlation | Output Container |

Fig. 7 INVOKE template

The <assign>, <wait>, <empty> and <terminate> elements are used to provide some specific
functions; <assign> provides the functions to set the value of a part of specific container. <wait> is a
process which will wait for a given time-period or until a certain time has passed. <empty> just
represents a null process and the execution of the process of <terminate> will terminate execution of
the entire instance. We just provide a simple template for each one in Fig. 8.

3.4. Service Related Elements

The port and operation definitions in WSDL are already sufficient to generate OPDs. Each port type
defined in WSDL will be regarded as an object which exhibits several operations. The exhibition-
characterization link is used to represent it. Fig. 9 illustrates an example.

As stated in (BPEL4WS, 2002), the notions of service link and service reference are preliminary
and there are no standards for them. So we do not discuss them in detail in our approach. In order to
convert BPEL4WS documents to OPD, we just regard a partner and its related service link as an object
which is composed of one or two port objects.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 121

:
v

v v

ASSIGN WAIT EMPTY TERMINATE

<---
<_-_

Fig. 8 ASSIGN, WAIT, EMPTY, and TERMINATE templates

A\

Fig. 9 Example for port definition in WSDL

3.5. Exception Handling Elements

Exception handling elements are used to handle errors in the composed service. The semantics of
these elements is similar to structured exception handling statements in C++, except for
<compensationHandler> and <compensation> elements, which are used to support user-defined
transaction mechanisms. Frankly, there is no appropriate and formal way in OPD to describe these
elements. We will cover this issue in our further work.

4. The OPD-based Approach to Web Service Composition

In the above section, a set of mapping rules between OPD and BPEL4WS are introduced. With
these mapping rules and corresponding OPD templates, we propose our OPD-based approach to Web
Service composition. The approach could be divided into three steps: First, OPD is used to describe the
global flow of the composed service exactly like in the ordinary OPM analysis and design process.
Second, when we delve deeper and design the detail of the process, the OPD templates introduced in
the above section can be used to build the control flow. Finally, when all OPDs are created,
corresponding BPEL4WS documents can be generated from them.

In the rest of this section, we will present an example to illustrate how an OPD-based approach to
Web Service composition is used in practice. The example is taken from (BPEL4WS, 2002) and a few
modifications are made to it. Though the example is rather simple, it is sufficient to illustrate the
expressive power of our OPD-based approach.

4.1. Case Description

The case is about a shipping service which handles shipment orders. From the view of the shipping
service, an order is composed of the name of item, the destination, and the number of items. The
shipping service offers two kinds of shipments: (1) shipments in which the items are held and shipped
together and (2) shipments in which the items are shipped piecewise until all of the items are
processed.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 122

Four roles are involved in the process, the customer, the shipping service, the checking service and
the shipment handler. The customer should place a shipment order and send it to the shipping service,
then wait for shipment notice. The interactions between customer and shipping service are
asynchronous. After the order is received, the credit of the customer and the possibility to handle this
order should be checked by the checking service. The interactions between shipping service and
checking service are synchronous. Before the shipping service sends a shipment notice back to the
customer, it should ask the shipment handler to ship the items included in the notice. The interactions
between shipping service and shipment handler are synchronous.

Assuming that Web Services for customer, checking service, and shipment handler are already
implemented, our job is to compose the shipping service.

4.2. Global Flow

According to the above description, the global flow is illustrated in Fig. 10. The global flow of the
shipping service is composed of three processes. The first process is waiting for the shipment order
from the customer. The second process is checking the credit of the customer and the possibility to
handle this order. The third process is handling the shipment order. Shipment order and checking result
are messages exchanged among them. SEQUENCE and FLOW templates are used here to indicate the
execution sequence.

| Shipment Order | / SEQL&ENCE
{

Check credit and order \l/

Checking Result |

FLOW |

Handle shipment order

Fig. 10 Global flow of shipping service

4.3. Detailed Design

In the detailed design, we first present the OPDs for definition of ports and messages. In Fig. 11,
there are three kinds of messages existing in the system. ShipNoticMsg and ShipOrderMsg are
messages which are exchanged among all roles involved. CheckingResultMsg is returned by the
checking service. CreditCheckResult, ShipNotice, ShipOrder, and PossibilityCheckResult are instances
of these messages.

The operations of each port and corresponding input/output messages of each operation are
illustrated in Fig. 12. With the definitions in Fig. 11 and Fig. 12, the first and second processes are
extended in Fig. 10. The RECEIVE template is used for the first process, while the FLOW template is
used for the second. The extended OPD is illustrated in Fig. 13.

Now the last but most complex process is left. This process can proceed only if all checking results
are true. We use an ACTIVITY template in Fig. 14 to perform this check and the checking results are
regarded as the input of the join condition. In the process, a SWITCH template is used in case that the
customer requires two kinds of services, in which the items are shipped together or shipped in pieces.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 123

ShipNoticeMsg ShipOrderMsg

[|
ShipNoticeT | | ShipOrderID | | ShipOrderID | r| ShipOrderT CheckingResultMsg
/:\ /:\ [Approval] [Denial]
AU o] i

Number | | OrderID | | ShipType I——| Number |
|

CustomerID —| Destination

CreditCheckResult |

PossibilityCheckResult |

Fig. 11 Definition of messages
| CheckingServicePT | | ShipmentHandlerPT|

ShipNoticeMsg

ShipOrderMsg ShipOrderMsg

CheckCredit CheckPossibility ShipRequest

| CheckingResultMsg | ShipOrderMsg

B>

ShipTogether

ShipNoticeMsg

ShipInPieces

Fig. 12 Definition of ports

RecD c-—----——-=--> ShipRequest

@/ OrderID

1
:ﬂ PossibilityCheck

| CreditCheckResult | | PossibilityCheckResult |

<_ - - > CheckPossibility

Fig. 13 “Receive shipment order” and “Check credit and order” processes are expanded

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 124

CreditCheckResult | | PossibilityCheckResult

Checking Result

Condition checking

Checking Result
[Together] [In Pieces]

\ \l/

ShipNotice
Ship together Ship in pieces < P

1
SEQI{;NCE /]\
Send ship notice / / /

SWITCH

ACTIVITY

ShipOrder |

ShipTogether

B
i

ShipReply

Fig. 14 “Handle shipment order” process is expanded

For the order which can be shipped in pieces, a WHILE template should be imported to fulfill the
requirement. The sub-process cannot complete until all items in the order are shipped and for each
piece a shipment notice is sent to the customer. Fig. 15 illustrates this sub-process.

4.4. BPEL4WS Documents

Since all OPDs are created, BPEL4WS documents according to the templates and the mapping rules
are able to be generated. Frankly, some manual work is required to complete the details of the
documents, but major part of documents can be generated automatically from the existing OPDs.

First of all, a WSDL definition for this shipping service should be generated, in which messages,
ports, properties, property aliases, and service links are defined. The target of the WSDL definition
should be specified manually. Message definitions can be generated according to the aggregation-
participation structural links in Fig. 11, but the types of the objects should be defined manually. Port
definitions can be generated according to Fig. 12, and the input/output of each operation can also be
determined according to Fig. 12. Property and property alias definitions can also be generated
according to the equivalent links in Fig. 11. Finally, service link definitions, which have only one role
for each, are generated for each port. The detailed document is available at http://www.cs.cityu.edu.hk/
~liuwy/WS/A1.xml.

Then the BPEL4AWS documents for this shipping service should be generated next. A <process>
element is first added, in which target and reference should be defined manually. For each port in
WSDL definition, a <partner> is generated with the corresponding service link. Containers are
generated according to the instantiation links in Fig. 11. Correction sets are generated according to the
equivalent links in Fig. 11. Then definitions of control flows can be generated according to the

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 125

templates used in OPDs in Fig. 13, Fig. 14 and Fig. 15. Notice that in the OPDs, transition conditions,
join conditions and case conditions are not defined. It is necessary to add them into the documents
manually. It is also identical to the assign process, whose detail is not specified in OPDs. The detailed
document is available at http://www.cs. cityu.edu.hk/~liuwy/WS/A2.xml.

WHIL

Testing Result

OrderID

> ShipInPieces

ShipNotice
A

Fig. 15 “Ship in pieces” process is expanded

5. Concluding Remark

In this paper, an OPD-based approach was proposed for Web Service composition, in which several
mapping rules between OPD and BPEL4WS were introduced. We extend OPD with the equivalent link
and propose a set of OPD templates to represent Web Service composition originally described using
BPEL4WS. The advantages of this approach include visual representation (OPDs) of the Web Service
composition process, which makes it not only easier for us to understand existing BPEL4WS
documents but also more convenient to design and revise Web Service composition and automatically
generate BPEL4WS documents (major parts) from the visual models.

6. Acknowledgement

The work described in this paper was supported by a DAG grant from City University of Hong
Kong (Project No. 7100292).

7. References

BPEL4WS, 2002, “Business Process Execution Language for Web Service, Version 1.0”, http://www.ibm.co
m/developerworks/library/ws-bpel/.

Casati, F., et al., 2000, “Adaptive and Dynamic Service Composition in eFlow,” Proceedings of CaiSE 2000,
Stockholm, Sweden, pp. 13-31.

Dori D., 1995, “Object-Process Analysis: Maintaining the Balance between System Structure and Behavior,”
Journal of Logic and Computation, Vol. 5, pp. 227-249.

Dori D., 2002, “Object-Process Methodology — A Holistic Systems Development Paradigm,” Springer.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 126

Liu W. and Dori D., 1999, “Object-Process Diagrams as an Explicit Algorithm-Specification Tool,” Journal
of Object-Oriented Programming, Vol. 12, No. 2, pp. 52-59.

Piccinelli G., 1999, “Service Provision and Composition in Virtual Business Communities,” Technical Report
HPL-1999-84, Hewlett-Packard.

WSFL, 2001, “Web Services Flow Language (WSFL 1.0),” http://www-3.ibm.com/software/solutions/webser
vices/pdtf/ WSFL.pdf.

XLANG, 2001, “Web Service for Business Process Design,” http://www.gotdotnet.com/team/xml_wsspecs/x1
ang-c/default. htm.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 127

