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Abstract. The paper provides a conceptual framework for designing and exe-
cuting business processes using semantic Web services. We envision a world in
which a designer defines a “virtual“ Web service as part of a business process,
while requiring the system to seek actual Web services that match the specifi-
cations of the designer and can be invoked whenever the virtual Web service
is activated. Taking a conceptual modeling approach, the relationships between
ontology concepts and syntactic Web services are identified. We then propose a
generic algorithm for ranking top-K Web services in a decreasing order of their
benefit vis-á-vis the semantic Web service. We conclude with an extention of the
framework to handle uncertainty as a result of concept mismatch and the desired
properties of a schema matching algorithm to support Web service identification.

1 Introduction

Web services allow universal connectivity and interoperability of applications and ser-
vices, using well-accepted standards as UDDI, WSDL, and SOAP. Current Web ser-
vice standards focus on syntactic, operational details for implementation and execution
rather than semantic capabilities description. A recent development enables the spec-
ification of semantic Web services. The semantic Web [5] aims to extend the World-
Wide-Web by representing data on the Web in a meaningful and machine-interpretable
form. The semantic Web is based on a set of languages that provide well-defined se-
mantics and enable the markup of complex taxonomic and relations between entities on
the Web. Ontologies, commonly defined as specifications of a conceptualization, [20]
serve as the key mechanism for the semantic Web by allowing concepts to be globally
defined and referenced. A leading language for ontology modeling for the semantic
Web is the Web Ontology language (OWL) [9], providing a semantic markup for the
definition of concept classes, relationships among them, and their instances. Several
methods for annotating Web services with semantic metadata have been proposed. One
of the most prominent methods is OWL-S [3]. Based on OWL, it provides an ontology
for Web services, enabling a description of the service’s profile, process model and its
grounding - a mapping to the syntactic definition of the concrete Web service.

We envision a world in which some Web services have semantic descriptions, while
others are only syntactically defined (using WSDL, for example). In particular, design-
ers can define a “virtual” Web service as part of their business processes. An execution
engine is required to look for actual Web services that match the specifications of the



designer and can be invoked whenever the virtual Web service is activated. The design
of semantic Web services can be an iterative process, starting from rough design, and
gradually refine the design based on feedback from some mechanism that grounds the
semantic Web service to some existing Web services.

It is the aim of this paper to provide a framework for a model-driven design using
semantic Web services. Taking a conceptual modeling approach, relationships between
ontology concepts and syntactic Web services are identified. We then propose a generic
algorithm for ranking top-K Web services in a decreasing order of their benefit vis-á-vis
the semantic Web service. We conclude with a discussion on extending the framework
to handle uncertainty that stems from concept mismatch and the desired properties of a
schema matching algorithm to support Web service identification.

The main contribution of this work is twofold. At the conceptual level, we introduce
a method for designing business processes as a composite set of Web services. At the
algorithmic level, we provide a generic algorithm for ranking concrete Web services
with respect to their suitability in fitting a semantic Web service description, in effect
offering a model-driven approach for service-oriented computing. The semantic Web
service serves as a conceptual model. Rather than generating a code out of the model,
the model is implemented by locating and invoking existing services. It is worth noting
that the concrete Web services are not necessarily annotated with semantic meta-data,
and may be described as WSDL documents, reflecting the current state of affairs. Fi-
nally, we discuss the characterization of requirements for a schema matching algorithm
should satisfy to qualify for interfacing with the Semantic Web.

The rest of the paper is organized as follows. Section 2 presents the model and
formally defines the problem. The use of ontologies in ranking Web services is given
in Section 3, followed by an algorithm for the matching process (Section 4). Section 5
discusses an extension to support semantic heterogeneity. Section 6 contains a related
work. The paper concludes with a summary and future work (Section 7).

2 Model and Problem Definition

In this section, we provide a formal definition of the two main elements of our model,
namely Web services (Section 2.1) and Semantic Web services (Section 2.2). We con-
clude with a formal introduction of the problem at hand (Section 2.3).

2.1 Web Services

Web services are loosely coupled software components, published and invoked across
the Web. Several XML-based standards ensure the regulation of discovery and the in-
teraction of Web services. In particular, UDDI allows Web services to be discovered
through a keywords search. A Web Services Description Language (WSDL) document
describes the interface and communication protocol of Web services. In this paper, we
use restricted WSDL definition, ignoring namespaces, faults handling, and communi-
cation issues. Therefore, a Web service is a quadruple, WS = (T,M,O,A), where:

– T is a finite set of types. A type can be primitive (e.g., integer) or complex, de-
scribed by an XML schema.



– M is a finite set of messages. Each message is defined by a name and a type, t ∈ T .
– O is a finite set of operations provided by the service.
– A : M,R→ O is a finite set of assignments, each of which assigns a set of mes-

sages in {m1,m2, ...,mn} ∈M and R = {input,out put} to an operation o ∈O. Each
message can serve as either an input or an output of the operation.

Current Web service architecture suffers from several limitations. In particular, al-
though Web services are designed to provide distributed interoperability among appli-
cations, lack of semantic definition of these applications make the automatic integration
and discovery of Web services a difficult task.

2.2 Semantic Web Services

Applying the advances of the Semantic Web to Web services, resulted in OWL-S [3].
OWL-S is a language for specifying Web service ontology, based on OWL, which aug-
ments current Web services architecture with semantic metadata. It provides a set of
markup language constructs for describing the properties and capabilities of Web ser-
vices, facilitating the automation of Web service tasks, including automated discovery,
execution, composition and interoperation. An OWL-S ontology includes three sec-
tions, namely a profile ontology (what the service does), a process-model ontology
(how it works) and a grounding ontology (how it can be used). The profile ontology ex-
tends the UDDI language, providing semantic annotation for the parameters the service
accepts and provides, as well as general information describing the service.

We use as a case study, a semantic Web service named Book Price. The service re-
ceives a book title and a currency, locates the book’s information, retrieves a price quote
for it and convert it into a desired currency.1 Figure 1 provides a visual illustration of the
service using OPM/S [15], which serves as a modeling and visualization method for se-
mantic Web services. OPM/S is an extension of Object-Process Methodology (OPM) -
a conceptual object-oriented and process-oriented modeling language that supports the
semantic Web [13, 14]. OPM/S models are composed of two entity types, namely ser-
vices (represented as ellipses), and parameters that pass between (and possibly modified
by) services, represented as rectangles. Semantics is annotated by tagging the entities
with their ontological concepts in the upper-left corner of the entity.

The Book Price service returns the price of a book given its name and a desired
currency. The service is composed of three atomic services, namely Book Finder, Price
Finder, and Currency Converter. Book Finder receives a book name and produces the
book information, if the book was found. Price Finder returns the book price in dol-
lars, and Currency Converter converts the price to the desired currency. The example
illustrates our notion of designing semantic Web services as an iterative process. In par-
ticular, note that the output of Book Finder is a rather fuzzy term of Book Info. As we
will show later, this term is grounded in an ontology, yet it leaves the designer some ma-
neuvering space. The designer has no particular preference at this time as to the exact
form of Book Info, as long as it can serve as an appropriate input to Price Finder.

The process-model is defined as a workflow of processes, each being a quadruple
PR = (IN,OUT,E,P), where IN is a set of input parameters, OUT is a set of output

1 Available at: http://www.mindswap.org/2004/owl-s/services.shtml



Fig. 1. Book-Price Service

parameters, E is a set of the process effects and P is a set of preconditions. Processes
can be atomic or composite. Atomic processes are invoked in a single step and can be
mapped directly to a WSDL operation. Composite processes, in contrast, represent a
complex structure of processes. Formally, a composite process augments the process
structure described above with a set of subprocesses (either atomic or composite), exe-
cuted according to a certain control construct (such as parallel, sequential, conditioned,
etc). For instance, the three subprocesses of the Book Price Service are executed se-
quentially starting from the top process. The last section of the OWL-S ontology is the
grounding ontology. It provides a mapping between the atomic processes to the WSDL
definition of the concrete Web service.

Elements of the profile and process-model sections, such as input and output ele-
ments, can be mapped to concepts in accompanying ontologies or to primitive XML
datatypes. To illustrate this mapping, we use the AKT portal ontology [1], visualized in
Figure 2 using OPM The Book Info parameter object in the semantic Web service (Fig-
ure 1) is mapped to a Book concept, described in the ontology. Given an ontology with
a set of concepts C, the function tag : IN∪OUT ∪E ∪P→C∗, maps a parameter to its
underlying set of concepts. A closer look at the portal ontology reveals the relationships
between the Book concept to other concepts. The Book concept is a specialization of
the Publication concept. Publication is characterized by Location, Date and Title, and
is a specialization of Information Bearing Object.

2.3 Problem Definition

Web service discovery is a process, in which a Web service is matched based on given
specifications. In this work we focus on specifications that are given as semantic Web



Fig. 2. The AKT Portal Ontology, visualized in OPM

services. Given an atomic process PR and a set OP = {OP1,OP2, ...OPp} of operations
within WSDL-described Web services, let ρPR = (�PR,OP ) be a partial order of op-
erations, representing their relative fit for implementing PR. Therefore, if OPi �PR OPj
then OPj is better suited to be executed as an implementation of PR than OPi. Typically,
ρPR may not be known in advance and currently a manual intervention on a grand scale
may be required to ensure a selection of a suitable Web service.

In an attempt to automate the process and avoid gross errors in the discovery pro-
cess, we propose the ranking of the best top-K suitable Web services, rather than pro-
viding a single Web service. Formally, given a process PR, a domain ontology ON, and
a set OP = {OP1,OP2, ...,OPp} of available Web services, we wish to generate a ranked
mapping OP ′ =

{
OP(1),OP(2), ...,OP(k)

}
of K Web services such that:

– ∀i < j ≤ k OPj �PR OPi, and
– ∀k < l OPl �PR OPk.

3 Web Service Ranking using Ontologies

This section provides a conceptual ontology-based model for Web service ranking. Sec-
tion 3.1 describes context classes and mark vectors, which are the primary tools for con-
ceptual analysis of semantic Web services. Section 3.2 describes the method of ordering
results of queries for Web services. Section 3.3 provides a detailed example.

3.1 Classification into Context Classes

We start our conceptual analysis by observing that ontologies provide a natural ranking
mechanism that can be derived from the semantics of ontological constructs. Given a
concept c ∈ C, annotated as the “anchor” concept, all concepts in C can be classified
into one of four context classes, as follows:



Table 1. Classification of Semantic Relations to context classes

Context Class OWL relations
Exact direct mapping, owl:equivalentClass, owl:equivilantProperty,

owl:sameIndividualAs, owl:ObjectProperty, owl:DatatypeProperty
Specific owl:subClass, owl:intersectionOf, owl:oneOf, individual,

{x|∀c ∈ Speci f ic,x = Ob jectProperty(c)∨ x = DatatypeProperty(c)}
General owl:unionOf, super-class, inverse(property), class-of

{x|∀c ∈ General,x = Ob jectProperty(c)∨ x = DatatypeProperty(c)}
Negation owl:complementOf, owl:disjointWith

Exact Concepts that have identical semantic meaning,including c itself and its prop-
erties. OWL provides relations such as equivalentClass to define concept equiva-
lence.

General Concepts that supply higher-level context. For instance, the Publication con-
cept is a super-class of the Book concept and therefore falls under the category of
General with respect to Book.

Specific Concepts that provide a more specific context. Book belongs to the Specific
class of Publication.

Negation Concepts which have explicit contradicting meaning. For instance, in OWL,
if class c1 disjointWith class c2, then an instance of c1 cannot be an instance of c2.

While this classification is not new, careful attention should be given to properties,
to which actual instance values are attached. Recall that our goal is to rank Web ser-
vices according to their adequacy for the task at hand. Therefore, parameters from the
semantic Web service description should be mapped to input and output messages of
operations. Whenever a parameter is not grounded in a property element of an ontology,
we should translate this grounding in terms of properties. Therefore, a class is repre-
sented by a subset of its properties, while a relation is represented by a subset of the
properties of the class(es) with which it is associated. We should emphasize that this is
not generally true, and such simplification is needed due to the simple format of WSDL.
If a concept is mapped to a certain context class, its properties (both object properties
and datatype properties) are added to the corresponding context class.

Given an ontology with a set of concepts C, there are 2n−1 interesting combinations
of concepts from C, ranging from individual concepts to a set of all concepts. Any such
combination C′ ⊆ C is a possible CNF query to a Web service search engine. Let the
response to such query be all Web services for which these concepts are considered
relevant by the search engine. For example, given a query C′ ⊆C, Woogle [12] returns
all Web services for which all concepts in C′ appear in their WSDL description.

Given a concept c ∈C, a query C′ ⊆C can be mapped to a vector mark = (e,g,s,n)
of binary variables, representing the context classes Exact, General, Specific and Nega-
tion, respectively. A variable is assigned with a value of 1, if exists c′ ∈C such that c′

belongs to the relevant context class of c. We now consider the AKT portal ontology
(Figure 2) for some examples. Assuming the anchor concept is Book, then the queries
{Book} and {Book∧ ISBN} are mapped to the mark vector (1,0,0,0) since they contain
concepts from the exact context class. The query {Book∧ ISBN∧Title} contains both



Table 2. Mark vectors and their classifications

Exact General Specific Negation Ranking Category
1 1 1 0 ACCURATE

1 1 0 0
1 0 1 0
1 0 0 0 CONTEXT-LESS

0 1 1 0 CONTEXT-ONLY

0 1 0 0
0 0 1 0
0 0 0 1 INVERSE

0 1 0 1 UNCERTAIN

0 0 1 1
0 1 1 1
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1
0 0 0 0 EMPTY

Exact concepts (Book and ISBN) and a General concept (Title). Hence, it is mapped to
the vector (1,1,0,0).

Table 2 provides the complete mark vectors set. The right column groups the vectors
into 5 ranking categories according to the matching pattern derived from the vector.
For instance, the ACCURATE category contains results that originate from both direct
mapping concepts and context concepts. Thus, it has the potential to produce results
with high accuracy. The CONTEXT-LESS category contains results that originated from
direct mapping concepts only, without a match to supporting context concepts.

3.2 Ranking of Mark Vectors

The ranking of Web services relies on ranking of mark vectors, based on the marginal
benefit of the concepts that form the vector. Each context class has a different contri-
bution to the vector. For instance, a concept that belongs to the General class provides
context to the query and potentially increases its precision. On the other hand, concepts
that belong to the Negation class may lead to erroneous results. A partial order be-
tween mark vectors is proposed in Figure 3. Mark vectors of the ACCURATE category
are ranked higher than any other category, because their compatible queries contain
both exact and contextual concepts. Specifically, it is considered more accurate than
vectors of the CONTEXT-LESS and CONTEXT-ONLY categories. However, no order is
determined between CONTEXT-LESS and CONTEXT-ONLY categories. Order between
vectors within a category is relevant to the ACCURATE and CONTEXT-ONLY categories,
and it is based on the weighted sum of matching concepts. The three top classes repre-
sent positive queries, those originating from direct and contextual concepts. The three
bottom classes represent negative queries, which will retrieve empty, unfavorable or
doubtful results. Queries which are assigned to the same mark vector may have an in-
ternal ranking between them, according to the number of concepts that form the query.



Context-Less
(1,0,0,0)

Inverse
(0,0,0,1)

Uncertain
{(0,1,0,1), (0,0,1,1), (0,1,1,1), (1,0,0,1),

 (1,1,0,1), (1,0,1,1), (1,1,1,1)}

Context-Only

(0,1,1,0)

(0,0,1,0) (0,1,0,0)

Accurate

(1,1,1,0)

(1,0,1,0) (1,1,0,0)

Fig. 3. Partial Order between Mark Vectors

If C1 and C2 are two queries, and the number of concepts in C1 is higher than the number
of concepts in C2, then C1 is considered more precise and therefore it is ranked higher.

3.3 Example

Consider the Book Price Service, as described in Figure 1, and the AKT portal ontology
(Figure 2). To ground the first atomic process of the service - Book Finder - we describe
the output parameter, Book Info, using a set of concepts from the portal ontology. The
set C will be defined as all elements of the ontology (including properties), and the
anchor concept is defined as Book. The context classes for Book are defined as follows:

– Exact = {Book, ISBN}
– Speci f ic = φ

– General = {Publication,Title,Date,Location, IsAuthoredBy, IsOwnedBy . . .}
– Negation = φ
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Fig. 4. Matching Results for the BookFinder Process

The next step is to build a set of queries C′ ⊆ C. For instance, the following list
contains a subset of the conjunctive normal form queries that can be constructed from
concepts of C, and their compatible mark vector:

{Book} ,{Book∧ ISBN} ⇒ (1,0,0,0)
{Book∧ ISBN∧Publication} ,{Book∧ ISBN∧Publication∧Title} . . .⇒ (1,1,0,0)

adding concepts to the query can potentially increase its precision (and decrease
its recall). Therefore, each query in the list is ranked higher than the subsequent query
on its left hand side. Furthermore, queries that are assigned to mark vectors of the
ACCURATE class are ranked higher than ones of the CONTEXT-LESS class. Figure 4
describes the outcome of executing the queries through the Woogle search engine [12]
on real Web services. The dashed circles represent sets of services that were retrieved
using a single query. For instance, the following services were returned in response to
the {Book} query: Travel SerkoA , K4THotel, Neil Finn Travel, Barnes & Noble Quote
Service and Book Info Service. These services belong to two different domains: the
travel domain, where the word Book is used in the context of booking a flight, and
the publication domain, which is the one we need. Intersection of this set with the set
induced by {ISBN}, results in a subset of the previous set. It is worth noting that the
Book Info Service, which is the only service that answers the requirements, is retrieved
by the query {Book∧ ISBN∧Publication∧Title}. This query is ranked higher than
{Book∧ ISBN}, so the final ranking will be:

Book Info Service≺PR Barnes & Noble Quote Service≺PR Neil Finn Travel . . .
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Fig. 5. Mapping between semantic processes and WSDL operations

4 Generic Ranking Algorithm

We now present a generic ranking algorithm that takes as input an atomic process PR,
a domain ontology ON, and a set of WSDL-described operations OP , and returns a
set of operations OP ′, which are ranked according to their capability of implementing
PR. The basic idea behind the algorithm is to infer affinity between a process and each
operation, and use it as a measure for ranking. Affinity is derived from the mappings be-
tween process parameters (p1, p2, ..., pk) and operation messages (m1,m2, ...,mn). Such
a mapping, as presented in Section 3, is provided through the ontological concepts,
associated with parameters. Figure 5 visualizes this notion for parameter p1. p1 is rep-
resented by concepts C1 and C2, which are directly mapped to message m1.

An implicit assumption in the ensuing discussion is that two operations that take
the same parameters as input perform the same intended activity. Researchers have
argued against this assumption [32]. Therefore, we provide a motivation for keeping
it in this specific context. According to the model, the behavior of a semantic Web
service is expressed using composite processes. Such flexibility allows a designer to use
atomic processes for constructing composite ones. Therefore, one can assume that PR
is sufficiently simple, or else it would be designed as a composite process and be further
decomposed into atomic processes. While “sufficiently simple“ is a vague metric, we
assume that the output variance of such processes is limited, implying that the interface
of the operation is sufficient for matching purposes. Moreover, Web service designers
who wish external programs to use their proposed Web services are expected to develop
simple, well-documented processes, again supporting our assumption.

The basic idea behind the algorithm is to use the underlying ontologies to produce
a contextual matching of parameters, as defined in Section 3. The algorithm analyzes
the semantic relationships between concepts and produces a ranking of the parameter
matching results, which is reflected later in a ranking between the operations.

The algorithm iterates through all the parameters of a process PR, extracting the
concepts related to that parameter. A mapping is established by procedure MatchMes-
sages between each parameter and each operation message. The mapping is an assign-
ment Mapping : (message, parameter)→ [0,1], assigning a matching score to each



Algorithm 1 Rank Operations
Input: PR, ON, OP =

{
OP1,OP2, ...,OPp

}
Output: OP ′ =

{
OP(1),OP(2), ...,OP(k)

}
Mappings← φ

Messages←
S

OPi∈OP A−1(OPi)
for all paremeter ∈ PR do

for all c ∈ concept(parameter) do
Concepts← (c,“direct“)
Concepts← (related(c,ON), rtype)

end for
ParameterMapping←MatchMessages(Concepts,Messages)
Mappings←Mappings∪ (parameter,ParameterMapping)

end for
for all OPi ∈ OP do

OP ′← OP ′∪OPi
for all OP( j) ∈ OP ′ do

OP( j) �PR OP(i)⇔ score(OP( j))≥ score(OP(i))
end for

end for

message-parameter pair. The overall ranking of the operation set is calculated by the
function score(OP), which is described below. Finally, a ranking between the opera-
tions is established according to the matching score.

An important aspect of the algorithm is the use of related concepts. The set Concepts
holds concepts, extracted from the ontology. Each concept is tagged with its relation to
the original concept (i.e., the concept to which the parameter is tagged). For example,
in the BookPrice process definition (Figure 1), the parameter Book Info is mapped di-
rectly to the concept Book of the AKT portal ontology (Figure 2). We define the concept
Book as a semantic anchor within the ontology, and it is tagged with the direct tag. The
related(c,ON) function retrieves a list of concepts which are related to the anchor con-
cept in the ontology ON and tags each concept according to its semantic relation type
(rtype) to the anchor object.

After characterizing the concepts according to their semantic relation, MatchMes-
sages is called in order to compute a matching score between the parameter and each
of the available messages. The core of MatchMessages is elaborated in Section 3. Ba-
sically, it produces a mapping between the set of concepts, representing the OWL-S
process parameter set, and each set of messages, specified in the interface of the WSDL
operations. A precondition of the existence of any semantic correspondence between
the message and the parameter is data-type equivalence between the two. The function
MatchDataType compares the types of the parameters of the corresponding concepts to
be matched. For instance, if the primitive type of the direct-mapping concept of the pa-
rameter is xsd:string and the primitive type of the message is xsd:float, then the message
cannot match the parameter.



If the message passed the data-type test, the procedure applies a virtual matching
function, GenericMatch, in order to calculate the similarity between each concept and
each message. The abstract function can be implemented using string matching, lin-
guistic similarity or schema matching techniques.2

The last stage of the algorithm involves the ranking of the operations according to
their overall matching score. An operation OP( j) is ranked higher than operation OP(i)
if it has a higher or equal score. The calculation is defined as follows:

score(OP) =
1

|Parameters| ∑
pr,m∧A(m)=op

Mapping(pr,m)wpr ·∏
pr

h(OP, pr)

h(OP, pr) =

1 if pr is mapped by at least one message m ∈ OP,
such that Mapping(pr,m) > 0

0 otherwise

The function averages the matching scores (Mapping) for each message that par-
ticipate in some assignment A and each of the process parameters (pr ∈ Parameters).
Parameter importance is specified using a weight wpr, which is associated with each
parameter. To omit operations that have only a partial mapping to the process, we use
h to assign a value of zero whenever the mapping of the operation does not supply a
corresponding message for each of the process parameters.

5 Web Services and Schema Matching

Schema matching is the task of matching between concepts describing the meaning
of data in various data sources (e.g. database schemata, XML DTDs, HTML form tags,
etc.). As such, schema matching is recognized as one of the basic operations required by
the process of data integration [7]. Due to its cognitive complexity [8], schema match-
ing has traditionally been performed by human experts [22]. As the automation level of
data integration increases, the ambiguity inherent in concept interpretation is becoming
a major obstacle to effective schema matching. For obvious reasons, manual concept
reconciliation in dynamic environments (with or without computer-aided tools) is inef-
ficient and at times close to impossible. Introduction of the Semantic Web vision [5] and
shifts toward machine-understandable Web resources and Web services have underlined
the pressing need for automatic schema matching.

Attempting to address these data integration needs, several heuristics for automatic
schema matching have been proposed and evaluated in the database community (e.g.,
see [4, 10, 21, 16, 26, 31, 18]). However, as one would expect, recent empirical analysis
has shown that there is no single dominant schema matcher that performs best, regard-
less of the data model and application domain [17], and such schema matcher may never
be found. Finally, due to the unlimited heterogeneity and ambiguity of data, none of the
existing heuristics can find optimal mappings for many pairs of schemata.

Bearing these observations in mind and striving to some robustness in the match-
ing process, an approach studied in [2, 17, 24] suggested to generate not one, but K

2 See [18, 29, 25, 11] for examples of matching methods



top-ranked mappings, examining them (either iteratively or simultaneously) until a suf-
ficiently effective mapping is found. In this work, we adopt this research direction and
aim at extending Web service ranking to support imprecise matching. Observe that an
operation that implements PR fully is expected to have corresponding input and out-
put messages, which have the same semantics in spite of name differences. Therefore,
matching an ontology concept with a Web service input and output parameter may carry
with it a degree of uncertainty. As a simple example, consider the concept Title. This
concept may be matched (by one or another matching algorithm) with a concept Book
Title, and assigned a similarity of 0.5. Title belongs to its own Exact context class, and
therefore the e variable in the marks vector should be assigned a non-negative number.
A natural extension to the approach presented in this work, to support the uncertainty
that stems from partial mappings, can be done by allowing each variable in the marks
vector to accept values in [0,1], corresponding to the similarity measure as determined
by the matching algorithm(s) of choice. Such a change entails a revision in the partial
order among different marks vectors, as given in Figure 3. We defer this extension to
an extended version of this work.

Even though ontology languages such as OWL provide a formal set of constructs
and relations, the construction of semantic Web services and ontologies may vary sig-
nificantly among designers. This difference, which may be due to the methodologies,
conventions, purposes and even the “style“ the designers exhibit, can greatly affect the
results of the algorithm described in this work. Therefore, an analysis of the way on-
tological knowledge is modeled and understood by humans is necessary. Specifically,
research of the implications of different relations in ontological languages such as OWL
is relevant to our work. Emerging works in this issue include [6] and [30], but further
research is needed in this field.

6 Related Work

Our work presents an approach for grounding descriptions of semantic (possibly vir-
tual) Web services, which exhibit a rich conceptual model, with physical (possibly not
semantic) Web services, through their flat WSDL description. In this section we dis-
cuss other efforts that tackle similar problems. Paolucci et al. [28] proposed a method
for matching semantic Web services. The work uses the OWL-S profile ontology as
a method for describing the capabilities of services, and proposes an algorithm that
matches service requesters and advertisers. The work requires the availability of full se-
mantic description of both service requester and service advertiser in order to perform
the matching. Furthermore, it requires a common ontology, or at least two connected
ontologies. Klein et al [23] have used process ontology in order to match between ser-
vices. The work proposes an indexing schema for services in order to promote efficient
matching of services. Similar to [28], [23] requires services to be semantically anno-
tated and indexed before matching can be executed. Our work differs primarily in the
problem definition - we are concerned with grounding services to WSDL descriptions,
not with matching semantic Web services. We demonstrate that a major contribution to
a matching process can be made even if ontology exists only for one side of the match.



A prominent example of an architecture that supports dynamic composition of Web
services is Proteus [19]. Proteus suggests an information mediating approach towards
building dynamic compositions of Web services. It exhibits a multi-level architecture,
which includes wrapping existing data sources with Web services, locating Web ser-
vices through attribute search, building dynamic integration plans and efficiently exe-
cuting the services using compression techniques. However, this approach requires Web
services to be manually annotated, using a specialized ontology, in order to be reused.

METEOR-S [29] is a framework for annotating WSDL descriptions with semantic
metadata. It provides a framework for semi-automatic mapping between WSDL ele-
ments and ontological concepts. The matching algorithm is based on linguistic match-
ing at the single concept level which is enhanced with schema-based matching between
the XML schema specification of WSDL elements and the ontological structure. Our
work differs in the direction of matching and in its nature. While the matching algorithm
used in METEOR-S takes as input a WSDL document and matches it to an ontology,
our proposed algorithm performs the opposite task: it takes an ontology-powered con-
ceptual model and tries to match it with WSDL documents. This difference has consid-
erable implications on the algorithm. While METEOR-S is basically a schema match-
ing algorithm, our approach acknowledges the rarity of rich XML schemas in WSDL
documents. The lack of such schemas is compensated for by projecting the ontological
knowledge onto keyword queries.

Our work is also related to efforts for developing matching algorithms for non-
semantic Web services. Woogle [12] is a search engine for Web services. A similar goal
is shared by [27], which uses a different algorithm. Woogle accepts keyword queries
and returns results according to information in WSDL documents, including message
parameters. Our proposed framework is complementary to that of Woogle in the type
of queries it accepts. Our algorithm decomposes conceptual models into keywords and
then uses a generic algorithm in order to match the keywords. Woogle can be used as
an implementation for the latter task.

7 Conclusion

This paper describes a conceptual framework for designing composite business pro-
cesses using semantic Web services, grounding them with existing (either semantic or
other) Web services. A designer defines a rough draft of a semantic Web service to be
searched. The system then searches for existing Web services that match the specifica-
tions and ranks them according to their fit with the proposed process design. Modeling
languages such as OPM/S can be used for rapid specification of semantic Web service.

We use ontologies as the main vehicle for conveying semantics and utilize onto-
logical constructs in the ranking process. We then propose a possible extension of the
framework to handle poor Web service specifications and semantic heterogeneity. An
extended version of this work will include a fully specified methodology for designing
composite business processes in an environment with varying levels of semantic spec-
ifications. Other extensions of this work include efficient algorithmic solutions to the
ranking problem, using pruning and indexing.
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