
O. Etzion, T. Kuflik, and A. Motro (Eds.): NGITS 2006, LNCS 4032, pp. 186 – 197, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Analyzing Object-Oriented Design Patterns
from an Object-Process Viewpoint

Galia Shlezinger1, Iris Reinhartz-Berger2, and Dov Dori1

1 Faculty of Industrial Engineering and Management,
Technion-Israel Institute of Technology, Haifa 32000, Israel

galias@tx.technion.ac.il, dori@ie.technion.ac.il
2 Department of Management Information Systems,

University of Haifa, Haifa 31905, Israel
iris@mis.haifa.ac.il

Abstract. Design patterns are reusable proven solutions to frequently occurring
design problems. To encourage software engineers to use design patterns effec-
tively and correctly throughout the development process, design patterns should
be classified and represented formally. In this paper, we apply Object Process
Methodology (OPM) for representing and classifying design patterns. OPM en-
ables concurrent representation of the structural and behavioral aspects of de-
sign patterns in a single and coherent view. Comparing OPM and UML models
of seven popular design patterns, we found that the OPM models are more
compact, comprehensible and expressive than their UML counterparts. Fur-
thermore, the OPM models induce a straightforward classification of these de-
sign patterns into four groups: creational, structural composition, wrapper, and
interaction design patterns.

1 Introduction

Design Patterns describe generic solutions for recurring problems to be customized
for a particular context. They have attracted the interest of researchers and practitio-
ners as proven reusable solutions to frequently occurring design problems. Shalloway
and Trott [19] suggested several reasons for using, studying, and dealing with design
patterns, including the reuse of existing, high-quality solutions and establishing com-
mon terminology to improve communication within teams. However, deploying these
solutions to develop complex information systems is a tedious task that involves inte-
gration issues and iterative development. It is, hence, important to describe design
patterns, the problems they intend to solve, the context in which they can be reused,
and their consequences in a formal, unambiguous way that can be easily understood
by designers. The idea of identifying and reusing the common characteristics of a
problem has also been adapted in other fields; one such example is generic tasks [4] in
knowledge-based systems.

The increasing number of design patterns that have been proposed and published
over the last decade emphasizes the need for a good design patterns representation
language, as well as a framework for organizing, classifying, categorizing, and evalu-
ating design patterns, which will help designers in choosing and implementing the

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 187

correct solutions to the problems at hand. In this work, we suggest Object Process
Methodology (OPM) [6] for both purposes. OPM, which supports two types of
equally important elements, objects and processes, enables the representation of both
structural and behavioral aspects of design patterns in a single coherent view. Fur-
thermore, the OPM design pattern models lend themselves naturally to a clear, useful
classification. This classification is directly derived from the OPM models and does
not require justifications and further explanations in plain text. The contribution of
our work is therefore two-fold: First, we apply OPM to model and portray the essence
of design patterns in a more direct, complete, and comprehensible way than what can
be done using object-oriented languages. The completeness of the pattern models is
due to OPM's ability to represent both the structure and the behavior of the patterns.
Secondly, the categories of design patterns defined in this work are solidly grounded
by distinctive characteristics of their respective OPM models. Based on this classifi-
cation, design patterns can be used regardless of the chosen modeling language.

The rest of the paper is structured as follows. In Section 2 we review work relevant
to design pattern languages and classification frameworks. Section 3 provides a short
overview of OPM, while Section 4 presents OPM models of several design patterns,
making the point that these models induce an accurate design pattern classification
scheme. Section 5 concludes our work.

2 Motivation and Background

As noted, design patterns provide solutions for recurring design problems. The idea of
documenting design solutions as patterns is attributed to the American architect Chris-
topher Alexander [1]. Applying his idea to object-oriented design and programming,
design patterns are usually described using a template. The template used by Gamma
et al. in [11], for example, consists of pattern name and classification, intent (motiva-
tion), applicability, structure, participants, collaboration, consequences, implementa-
tion, sample code, known uses, and related patterns. The structure of the design
pattern is often illustrated by a graphical representation, such as such as OMT [18] or
UML [14] (in this work we will not differentiate between OMT and UML class
diagrams). Sometimes, the representations are also accompanied by brief textual de-
scriptions of the basic elements (i.e., classes) that compose the design pattern. The
behavioral aspect of the design pattern usually gets much less attention, and is some-
times described informally in text or through partial diagrams that specify the collabo-
ration between the various elements. Such semi-formal representations of design
patterns hinder their rigorous, systematic use.

Different languages have been proposed to formally represent design patterns.
Some employ mathematical descriptions [8], which require a fair amount of mathe-
matical skills and are not easily understood by designers, while others suggest visual
representations or markup languages. Several languages for describing design patterns
are based on UML or its extensions, e.g., [9, 12]. Their main shortcoming is the lack
of formality. Generally speaking, consistency and integrity are Achilles' heel of UML
[15, 17]. Markup languages, such as XML and OWL [5, 16], are also used for de-
scribing design patterns. While this approach may be very useful for building tools

188 G. Shlezinger, I. Reinhartz-Berger, and D. Dori

that support design patterns, markup languages are machine-understandable at the
expense of being cryptic to humans [7].

Since the number of design patterns is continuously increasing, there is a growing
need not only to formally describe the different aspects of design patterns, but also to
organize and classify them according to their purpose or structure. Noble [13] and
Zimmer [20], for example, have classified relationships among design patterns that
are mostly hierarchical. Zimmer's categorization brought him to the conclusion that
the Factory Method design pattern is not really a pattern, but rather a manifestation of
a "X uses Y" relationship between two other design patterns: Abstract Factory and
Template Method. He also suggested modeling behaviors as objects and introduced a
new design pattern, called Objectifying Behavior, for this purpose.

Gamma et al. [10, 11] have used two dimensions for classifying design patterns:
scope, which specifies whether the pattern applies to classes or objects, and purpose,
which reflects the intension of the patterns. According to the purpose dimension, a
design pattern can be creational, structural, or behavioral.

Another design pattern classification scheme [2] organizes patterns according to
their granularity, functionality, and structural principles. According to this categoriza-
tion, design patterns are only one group of patterns that belong to a specific level of
granularity. Design patterns were further divided into structural decomposition, or-
ganization of work, access control, management, and communication [3].

Since the classification schemes of design patterns are basically object-oriented,
their categorization, justified primarily with objects in mind, may not be comprehen-
sive. Adopting Object Process Methodology (OPM), which departs significantly from
the object-oriented paradigm, our approach to modeling and categorizing design pat-
terns is fundamentally different. These differences are most evident in design patterns
that involve dynamic aspects, since in OPM structure and behavior are equally impor-
tant. Analyzing the object-oriented classification of the design patterns in [11] with
respect to their OPM design pattern models, we offer an improved classification
scheme.

3 Object-Process Methodology

Object Process Methodology (OPM) is an integrated modeling paradigm to the
development of systems in general and information systems in particular. The two
equally important class types in OPM, objects and processes, differ in the values of
their perseverance attribute: the perseverance value of object classes is static, while
the perseverance value of process classes is dynamic. OPM's combination of objects
and processes in the same single diagram type is intended to clarify the two most
important aspects that any system features: structure and behavior. OPM supports
the specification of these features by structural and procedural links that connect
things. Structural links express static relations such as aggregation-participation and
generalization-specialization between pairs of things. Procedural links, on the other
hand, connect things to describe the behavior of a system, i.e., how processes trans-
form, use, and are triggered by objects. More about OPM can be found in [6].
Table 1 summarizes the OPM elements used in this paper.

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 189

Table 1. Main OPM elements, their symbols, and semantics

Semantics Symbol Element Name
A thing that has the potential of
unconditional existence

Object

A pattern of transformation that objects
undergo

Process

A procedural link indicating that a
process requires an unaffected object
(input) for its execution

Instrument link

A procedural link indicating that a process
changes an object

Effect link

A procedural link indicating that a process
creates an object

Result link

A procedural link indicating that a process
is activated by an event (initiated by an
object)

Event link

A procedural link indicating that a process
invokes another process

Invocation link

A structural relation between objects Structural Link

A structural relation which denotes that a
thing (object or process) consists of other
things

Aggregation-
Participation

A structural relation representing that a
thing (object or process) exhibits another
thing

Exhibition-
Characterization

A structural relation representing that a
thing is a sub-class of another thing

Generalization-
Specialization

4 Classification of Design Patterns

In this section we examine the classification of design patterns presented in [11] in
terms of OPM. Some of the patterns that are discussed there are modeled using UML
class and sequence diagrams. Due to lack of space, we present here only the UML
class diagrams of the design patterns.

4.1 Creational Design Patterns

Creational design patterns relate to class instantiation. Figures 1 and 2 describe two
creational design patterns: Factory Method and Builder. Each description includes a
problem definition, suggested solution, and UML and OPM models.

As the models in these two figures demonstrate, the UML and OPM models of the
design patterns differ in both orientation and abstraction level. While the UML models
are object-oriented, i.e., they comprise object classes only, the OPM models are com-
posed of both object and process classes. Thanks to the notion of stand-alone processes,
the OPM design pattern models do not require supplementary object classes, which are
used only as owners of methods (or operations) or as containers of other classes.

190 G. Shlezinger, I. Reinhartz-Berger, and D. Dori

Furthermore, OPM enables specification of behaviors. The UML model of the Fac-
tory Method design pattern, for example, requires specification of calling the "Factory
Method" from "An Operation" and indicating by informal notes that the "Factory
Method" returns a "Concrete Product". The OPM model, on the other hand, specifies
these requirements formally by using multiplicity constraints (zero to many, as dis-
cussed next) on the number of operations before and after the "Factory Method", and
a result link, indicating that the "Factory Method" generates and returns a "Product".
Multiplicity constraints in OPM can be associated not only to relations but also to
object and process classes. A multiplicity constraint on a thing (object or process) in a
design pattern model indicates how many occurrences of this thing can appear in an
application that implements the design pattern. In the case of the Factory method
design pattern, the process "Operation" can appear zero or more times, as indicated by
the "0..n" label at the upper left corner of the process, implying that "Factory Method"
is called from somewhere within the process called "An Operation", including its very
first or last operation.

FACTORY METHOD
Problem Definition:
A creation algorithm is common to entities of
several types.

Suggested Solution:
Decouple the algorithm for creating an
entity from the actual type of the entity
being created.

UML Model:

From [11], p. 108.

OPM Model:

Fig. 1. The Factory Method design pattern

These models also demonstrate the scaling mechanisms that are built into OPM for
enabling abstraction and refinement of things. These mechanisms enable detailing an
OPM model without loosing the "big picture" of the system or pattern being modeled.
The mechanism used in this case is in-zooming, in which an entity is shown enclosing
its constituent elements. The vertical axis is the time line, so within an in-zoomed
process it defines the execution order of the subprocesses, such that subprocesses that
need to be executed in a sequence are depicted stacked on top of each other, with the
earlier process on top of a later one. "An Operation" is in-zoomed here to display its
subprocesses: first a set of zero or more "Operations" is performed, then the "Factory
Method" is activated (creating "Products"), and finally another set of 0 or more
”Operations” is performed.

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 191

BUILDER
Problem Definition:
One construction sequence may construct different
kinds of products, some of which may be com-
plex.

Suggested Solution:
Separating the construction of a prod-
uct from its representation and inter-
nal structure.

UML Model:

From [11], p. 98.

OPM Model:

Fig. 2. The Builder design pattern

The second difference between the UML and OPM design pattern models is in
their support of abstraction levels. While in the UML models both the abstract and
concrete classes appear in the models, in the OPM models, which are actually meta-
models, only the "abstract" classes appear, while the concrete classes that implement
the abstract ones appear only in the actual models that make use of the design pattern.
In these concrete application models, the application elements will be classified ac-
cording to the design pattern elements using a mechanism similar to UML stereotyp-
ing. This separation of the design pattern model—the OPM metamodel—from the
application model results in a more abstract, formal, compact, and comprehensible
design pattern model. The OPM design pattern models can therefore be considered as
templates for applications that make use of these design patterns or as guiding meta-
models taken from some meta-library.

Studying the OPM models of the creational design patterns reported in [11] clearly
shows that the basic idea behind creational design patterns is separating the construc-
tion logic from the objects. The construction logic can be specified as a process that
creates the required object(s) as denoted by a result link from the process to the ob-
ject. This recurring process – result link – object pattern is distinguishable in the
OPM models in figures 1 and 2 by the pertinent object and process being marked in
grey and with thick lines. This pattern indeed justifies the classification of these two
design patterns as creational.

4.2 Structural Design Patterns

Structural design patterns relate to class and object composition. They use inheritance
to compose interfaces and define ways to compose objects to obtain new functional-
ity. Figures 3 and 4 respectively describe the Decorator and Composite structural
design patterns.

The design patterns in this group further emphasize and clarify the fundamental
differences between the UML and OPM design pattern models: All the constraints
which are specified in the UML models as notes (in plain text) are expressed formally

192 G. Shlezinger, I. Reinhartz-Berger, and D. Dori

in the OPM models. The Decorator design pattern in figure 3, for example, requires
adding behavior to a "component". This addition is specified in the UML model as a
note in which the "Decorator" "Operation" (which includes the "Component" "Opera-
tion") is first called and then followed by the "Added Behavior". However, this is
only one possibility defined in the design pattern problem section, which reads:
"There is a need to add functionality that precedes or follows a basic functionality…"
The OPM model enables any number of operations before and after the basic func-
tionality, which is called in the model "Component Operation".

DECORATOR
Problem Definition:
There is a need to add functionality that precedes
or follows a basic functionality without using sub-
classing.

Suggested Solution:
Add the functionality as an independ-
ent entity.

UML Model:

From [11], p. 177.

OPM Model:

Fig. 3. The Decorator design pattern

The UML and OPM models of the Composite design pattern in figure 4 are com-
pletely different. The UML model uses an aggregation relation between "Composite"
and "Component", while in the OPM model, "Composite" is zoomed into "Compo-
nents". However, zooming into an OPM process has both structural aspects (contain-
ment, part-whole relations), and procedural aspects (execution order). Furthermore,
we have found that the inheritance relation between "Composite" and "Component" in
the UML model of this pattern is redundant in the OPM model, since its only meaning
is that they are both processes.

The recurrent pattern in the OPM models of this group of design patterns is proc-
ess – invocation link – process. Another observation is that all the design pattern
models contain a process which is further zoomed into subprocesses, one of which
invokes another process. Although on the surface this pattern should be classified as
behavioral rather than structural, a deeper look at the OPM models shows that they
basically define the structure of components, each of which is a process. The OPM
models of the Factory Method and Decorator design patterns reinforce this observa-
tion. The two design patterns are similar in that they both have an operation (perform-
ing some function) that may be preceded and/or followed by any number of other

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 193

COMPOSITE
Problem Definition:
A system contains simple components which can be
grouped to build composite components. Other parts of
the application should not be aware whether a component
is composite or not.

Suggested Solution:
Compose entities into tree
structures to represent part-
whole hierarchies.

UML Model:

From [11], p. 164.

OPM Model:

Fig. 4. The Composite design pattern

operations. However, the Factory Method emphasizes the creation of a product, while
the Decorator focuses on the separation between the basic functionality—the "Com-
ponent Operation" and the operation that uses it—the "Decorator Operation".

The OPM model of the Decorator design pattern represents a structural aspect
which is common to many behavioral patterns: the invoked process is external to the
in-zoomed process. This common aspect justifies their classification by several design
pattern classification schemes, including [10], [11], and [19], as wrappers. The wrap-
ping essence of the Decorator design pattern is supported by its OPM model, in which
one process actually wraps a call to another process.

4.3 Behavioral Design Patterns

Behavioral design patterns define algorithms and object responsibilities. They also
help in designing communication modes and interconnections between different
classes and objects. Figures 5-7 describe three behavioral design patterns: Chain of
Responsibility, Observer, and Template Method.

As the OPM models of these behavioral design patterns clearly show, the focus
here is on behavior and way of invocation. It should, hence, come as no surprise that
most of the OPM models in this category are dominated by processes. In the OPM
model of the Chain of Responsibility design pattern, a "Handler" invokes (triggers) its
successor. In the OPM model of the Observer design pattern, there are two different
processes: "Notify", which is triggered by the "Subject" and affects the relevant "Ob-
servers", and "Update", in which the "Observer" can change the state of the "Subject".

The pattern that characterizes most of the behavioral design pattern OPM models
is object – event link – process – effect link – object, implying that these design
patterns have both triggering and affecting aspects. The two exceptions to this

194 G. Shlezinger, I. Reinhartz-Berger, and D. Dori

CHAIN OF RESPONSIBILITY
Problem Definition:
There is a need to invoke a behavior without
specifying which implementation should be
used.

Suggested Solution:
Create a chain of behaviors and pass
our request along this chain until it
is handled

UML Model:

From [11], p. 225.

OPM Model:

Fig. 5. The Chain of Responsibility design pattern

OBSERVER
Problem Definition:
There is a one-to-many dependency relation between
objects in the system.

Suggested Solution:
Separate between the true object
and its observers.

UML Model:

From [11], p. 294.

OPM Model:

Fig. 6. The Observer design pattern

characterizing pattern are Chain of Responsibility and Template Method. When
modeling the Chain of Responsibility design pattern in OPM, for example, we get a
structure of processes that is quite similar to the Decorator structure.

The OPM model of the Template Method design pattern uses the notation of an envi-
ronmental process (dashed border lines). An environmental thing (object or process) in
OPM is either external to the system (pattern) or is an abstract, under-specified thing
that needs further specification in the target application model. The OPM model of the
Template Method design pattern specifies that the "Template Method" consists of
"Internal Operations", as well as "Primitive Operations" that should be further specified
in the context of an application. This model is quite similar to the OPM model of the
Factory Method; they both define functionality which should be embedded in a behavior

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 195

and can be preceded and/or followed by different operations. However, the focus of the
Factory Method design pattern is behavioral—the embedded functionality creates prod-
ucts, while the emphasis of the Template Method design pattern is structural—the tem-
plate consists of internal operations, as well as external (environmental) ones.

TEMPLATE METHOD
Problem Definition:
A skeleton of an algorithm is common to sev-
eral different implementations.

Suggested Solution:
Encapsulate the skeleton in an abstract
class and allow sub-classes to implement
or redefine certain steps of the algorithm.

UML Model:

From [11], p. 327.

OPM Model:

Fig. 7. The Template Method design pattern

4.4 Classifying Design Patterns from an OPM Viewpoint

As we have seen, the OPM models of the design patterns reviewed in this paper induce
a refined and precise way to classify design patterns. This classification includes four
groups, listed in Table 2. The first group of creational design patterns, which is quite
identical to the creational group in [11], is characterized by the OPM pattern of process
– result link – object, which purely conveys the idea of a process creating an object.

The second group, structural composition design patterns, has the most abstract
characterizing structure: two processes are connected via a structural relation of any
type. In the Composite design pattern, for example, the in-zooming of "Composite"
into "Component" reveals an aggregation relationship. Note that in the case of Chain
of Responsibility, one process, "Handler", plays the role of both processes. Further-
more, the Chain of Responsibility design pattern is often used together with the
Composite design pattern. As their OPM models show, these design patterns are very
similar and belong to the same category.

The patterns in the third group are classified as wrapper design patterns, since they
solve their stated problems by wrapping the original functionality.

Finally, the fourth group is the interaction design patterns group. The patterns in
this group focus on the interaction between static and dynamic aspects of the solution.
In OPM terms, these patterns emphasize procedural links, namely effect and event
links, which are responsible for updating objects and triggering processes, respec-
tively. This common structure can be observed in different manifestations in the OPM
models of the different design patterns that belong to this group. In the OPM model of

196 G. Shlezinger, I. Reinhartz-Berger, and D. Dori

Table 2. Classification of Design Patterns according to OPM models

Design Pattern Category Design Pattern Examples Typical OPM Model Core

Creational Factory Method
Builder

Structural composition Chain of Responsibility

Composite
Template Method

Wrapper Decorator

Interaction Observer

the Observer design pattern, the characteristic structure of the interaction design pat-
terns appears twice.

5 Conclusions and Future Work

To encourage software engineers to employ design patterns throughout the entire
software development process, the design patterns should be classified logically and
represented formally, so their retrieval would be effective and their usage—correct.
Since different stakeholders engaged in systems development are more likely to re-
member visual representations of ideas than textual ones, both UML and OPM sug-
gest ways to model design patterns graphically.

In this paper, we have presented OPM models of seven popular design patterns.
We pointed out how the OPM models of the design patterns convey the essence of the
solutions offered by the patterns and how these OPM models help designers integrate
them into their application models. Comparing the design patterns' OPM models to
their UML counterparts, we have shown that the former are more expressive and
formal. Furthermore, we found out that the OPM models induce a logical classifica-
tion of the design patterns into four groups: creational, structural composition, wrap-
per, and interaction. This classification refines the classification in [11] and identifies
some problems in the categorization there (Chain of Responsibility and Template
Method, for example, should be categorized as structural design patterns rather than
behavioral ones).

We plan to apply our approach to additional design patterns and develop models of
complete applications that host design patterns. We also plan to develop ways to
retrieve design patterns easily (using OPM models) from the problem domain.

 Analyzing Object-Oriented Design Patterns from an Object-Process Viewpoint 197

References

1. Alexander, C., Ishkawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language. New York: Oxford University Press (1977).

2. Buschmann, F., Meunier, R.: A System of Patterns. In: Coplien, J. O. and Schmidt, D. C.
(eds.): Pattern Language for Program Design, Addison-Wesely (1995), pp. 325-343.

3. Buschmann, F., Meunier R., Rohnert, H., Sommerland, P., Stal, M.: Pattern-Oriented
Software Architecture: a System of Patterns. Wiley (1996).

4. Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: high-level building
blocks for expert system design. IEEE Expert (1986), pp. 23-30.

5. Dietrich, J., Elger, C.: A Formal Description of Design Patterns using OWL. Proceedings
of the 2005 Australian software engineering conference (2005), pp. 243-250.

6. Dori, D.: Object-Process Methodology – A Holistic System Paradigm. Springer (2002).
7. Dori, D.: ViSWeb – The Visual Semantic Web: Unifying Human and Machine Knowledge

Representations with Object-Process Methodology. The International Journal on Very
Large Data Bases, 13, 2, pp. 120-147, 2004.

8. Eden, A. H., Hirshfeld, Y., Yehudai, A.: LePUS – A declarative pattern specification lan-
guage. Technical report 326/98, department of computer science, Tel Aviv University
(1998).

9. France, R. B., Kim, D. K., Ghosh, S., Song, E.: A UML-Based Pattern Specification Tech-
nique. IEEE Transactions on Software Engineering (2004), 30 (3), pp. 193-206.

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and Reuse
of Object Oriented Design. Proceedings of the 7th European Conference on Object Ori-
ented Programming. Berlin: Springer-Verlag (2003), pp. 406-431.

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994).

12. Lauder, A., Kent, S.: Precise Visual Specification of Design Patterns. Lecture
Notes in Computer Science (1998), Vol. 1445, pp 114-136.

13. Noble, J.: Classifying relationships between Object-Oriented Design Patterns. Proceedings
of the Australian Software Engineering Conference (1998), pp. 98-108.

14. Object Management Group. UML 2.0 Superstructure FTF convenience document.
http://www.omg.org/docs/ptc/04-10-02.zip.

15. Peleg, M., Dori, D.: The Model Multiplicity Problem: Experimenting with Real-Time
Specification Methods, IEEE Transaction on Software Engineering (2000), 26 (8), pp.
742-759.

16. Petri, D., Csertan, G.: Design Pattern Matching. Periodica Polytechnica Ser. El. Eng
(2003). Vol. 46, no. 3-4, pp. 205-212.

17. Reinhartz-Berger, I.: Conceptual Modeling of Structure and Behavior with UML – The
Top Level Object-Oriented Framework (TLOOF) Approach. Proceedings of the 24th In-
ternational Conference on Conceptual Modeling (2005), Lecture Notes in Computer Sci-
ence 3716, pp. 1-15.

18. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W.: Object-Oriented Mod-
eling and Design. Prentice Hall, Englewood Cliffs, NJ (1991).

19. Shalloway, A., Trott, J.: Design Patterns Explained: A New Perspective on Object-
Oriented Design. Addison-Wesley (2001).

20. Zimmer, W.: Relationships Between Design Patterns. In: Coplien, J. O. and Schmidt, D.
C. (eds.): Pattern Language for Program Design. Addison-Wesely (1995), pp. 345-364.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

